
B
et

a
D

ra
ft

ENGLAND
ARM Ltd.
90 Fulbourn Road
Cambridge
CB1 4JN
UK
Telephone: +44 1223 400400
Facsimile: +44 1223 400410
Email: info@arm.com

GERMANY
ARM Ltd.
Otto-Hahn Str. 13b
85521 Ottobrunn-Riemerling
Munich
Germany
Telephone: +49 89 608 75545
Facsimile: +49 89 608 75599
Email: info@arm.com

JAPAN
ARM K.K.
KSP West Bldg, 3F 300D, 3-2-1 Sakado
Takatsu-ku, Kawasaki-shi
Kanagawa
213 Japan
Telephone: +81 44 850 1301
Facsimile: +81 44 850 1308
Email: info@arm.com

USA
ARM, INC.
Suite 5
985 University Avenue
Los Gatos
CA 95030 USA
Telephone: +1 408 399 5199
Facsimile: +1 408 399 8854
Email: info@arm.com

World Wide Web address: http://www.arm.com

User Guide

Document Number: ARM DUI 0048A

Released: June1998

© Copyright ARM Ltd. 1998

All rights reserved

B
et

a
D

ra
ft
Proprietary Notice
ARM, the ARM Powered logo, EmbeddedICE, and TrackingICE are trademarks of ARM Limited.
Visual C++ is a trademark of Microsoft Corporation.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or
reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product
and its use contained in this document are given by ARM in good faith. However, all warranties implied or expressed, including
but not limited to implied warranties or merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Ltd. shall not be liable for any loss or damage
arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the
product.

Key
Document Number
This document has a number which identifies it uniquely. The number is displayed on the front page and at the foot of each
subsequent page.

Document Status
The document’s status is displayed in a banner at the bottom of each page.
This describes the document’s confidentiality and its information status.
Confidentiality status is one of:
ARM Confidential Distributable to ARM staff and NDA signatories only
Named Partner Confidential Distributable to the above, and to staff of named partner companies only
Partner Confidential Distributable within ARM and to staff of all partner companies
Open Access No restriction on distribution

Information status is one of:
Advance Information on a potential product
Preliminary Current information on a product under development
Final Complete information on a developed product

Change Log
Issue Date By Change
A June 1998 BJH/JM First Release

ARM XXX 0000 X - 00

(On review drafts only) Two-digit draft number
Release code in the range A-Z
Unique four-digit number
Document type
 User Guide
ARM DUI 0048A

ii

B
et

a
D

ra
ft
Information on Electromagnetic Compatibility (EMC)
The Multi-ICE unit has passed tests for EMC compliance against the following standards:

• FCC part 15 Class A

• EN55022 Class A

• EN50082-1

In accordance with US FCC regulations, the following is provided as information to the user.

Note: This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to part 15 of the FCC Rules. These limits are
designed to provide reasonable protection against harmful interference when the
equipment is operated in a commercial environment. This equipment generates,
uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference to radio
communications. Operation of this equipment in a residential area is likely to
cause harmful interference in which case the user will be required to correct the
interference at his own expense.
The user is cautioned that changes or modifications not expressly approved by the
party responsible for compliance could void the user's authority to operate the
equipment.

In accordance with the European standard for EMC compliance of Information Technology Equipment (EN55022)
the following warning is stated here:

Safety Compliance
The Multi-ICE unit complies with the basic safety requirements of EN60950 for Information Technology
equipment. There are no user-serviceable parts inside the unit—any user interference may invalidate safety
compliance.

Warning
This is a Class A product. In a domestic environment this product may cause radio
interference in which case the user may be required to take adequate measures.
User Guide
ARM DUI 0048A

iii

B
et

a
D

ra
ft
 User Guide
ARM DUI 0048A

iv

1 Getting Started 1-1
1.1 System Requirements 1-2
1.2 Connecting the Multi-ICE Hardware 1-4

2 Multi-ICE Concepts 2-1
2.1 Introduction 2-2
2.2 Multi-ICE Configuration Data 2-5
2.3 Debugging Using Multi-ICE 2-9
2.4 Adaptive Clocking 2-10

3 Using Multi-ICE 3-1
3.1 Starting Multi-ICE 3-2
3.2 Overview of Multi-ICE Server Menus 3-4
3.3 Multi-ICE Server Configuration Files 3-9
3.4 Connecting an ARM Debugger to the Multi-ICE Server 3-13
3.5 Setting Ports 3-16
3.6 User Output Bits 3-17
3.7 User Input Bits 3-18
3.8 Clocking 3-20
3.9 Run Control 3-22
3.10 Error Messages 3-25

Contents
iUser Guide
ARM DUI 0048A

4 Multi-processor Debugger for Windows (MDW) 4-1
4.1 Introduction 4-2
4.2 MDW Concepts 4-4
4.3 The MDW Desktop 4-8
4.4 Getting Started 4-11
4.5 Debugger Configuration 4-18
4.6 Displaying Image Information 4-21
4.7 Setting and Editing Complex Breakpoints and Watchpoints 4-31
4.8 Other Debugging Functions 4-34
4.9 Using MDW with Piccolo 4-38
4.10 Working with Piccolo 4-43
4.11 Command Line Options for MDW 4-48

5 TAPOp Procedure Calls 5-1
5.1 Introduction 5-2
5.2 Accessing the Multi-ICE Server at the TAPOp Level 5-3
5.3 Using TAPOp Macros 5-11
5.4 TAPOp Calls Listed by Function 5-18
5.5 TAPOp Procedure Call Alphabetic Reference 5-21
5.6 TAPOp Error Codes 5-80

A JTAG Interface Connections A-1
A.1 Multi-ICE JTAG Interface Connections A-2
A.2 Multi-ICE Target Interface Voltage Levels A-5
A.3 TCK Frequencies A-6
A.4 TCK Values A-10

B User I/O Pin Connections B-1
B.1 Multi-ICE USER I/O Pin Connections B-2

C CP15 Register Mapping C-1
C.1 Register Mapping C-2
ii User Guide
ARM DUI 0048A

This chapter describes the requirements for running Multi-ICE effectively. It covers:

• system requirements

• information on connecting the Multi-ICE hardware

 Getting Started1
1-1User Guide
ARM DUI 0048A

Getting Started
1.1 System Requirements

1.1.1 Software requirements

You must be using one of the following operating systems to install and run Multi-ICE:

• Windows NT version 4.0 or higher

• Windows 95

If you wish to view the online manual—Multi-ICE User Guide (ARM DUI 0048)—you must
have a copy of Adobe Acrobat Reader, which is provided on the CD-ROM.

Networking software

For the Multi-ICE server to run, your operating system must be installed with its supplied
networking software. The Multi-ICE server cannot run without a TCP/IP stack. If this stack
is not present, the following warning text is displayed:

TCP/IP protocol does not appear to have been set up on this computer.
Setup will continue, but the TCP/IP protocol will need to be
installed before the server or debugger can be used.

Automatic dialup

Please disable the automatic dialup facility in your PC’s Dialup Networking software.
Automatic dialup is triggered by the presence of network packets; running Multi-ICE
produces network packets which will trigger automatic dialup if this is enabled on the PC.

1.1.2 Hardware requirements

The following are the minimum recommended hardware requirements for installing and
running the Multi-ICE server:

• 200MHz Pentium PC

• 32MB RAM for Windows 95; 64MB RAM for Windows NT

• CD-ROM drive (can be used across a network)

• VGA monitor, or better

• Parallel port

• Network card

Performance is based on two main factors:

• processor performance

• parallel port performance

Some newer machines have poor parallel port performance, which slows up the PC’s
interfaces. If you have a machine that falls into this category, it is recommended that you fit
a fast parallel port card. Limitations in performance will be noticed primarily when
downloading code.
1-2 User Guide
ARM DUI 0048A

Getting Started
Disk space

If you wish to carry out a full installation of the software, 5MB of hard disk space is required.

The list of files installed in Multi-ICE is given in the Multi-ICE Installation Guide (ARM
DSI 0005A) under section 2, List of Installed Files.
User Guide
ARM DUI 0048A

1-3

Getting Started
1.2 Connecting the Multi-ICE Hardware
A standard male-to-male 25-way parallel cable connects the Multi-ICE unit to the PC’s
parallel port.

The connection to the target board is made by a 20-way female IDC header cable (BT224
type) with all pins connected straight through (1-1, 2-2, ... 20-20). For further pin-out details,
refer to Appendix A, JTAG Interface Connections.

An adaptor is supplied to convert the 20-way header to the 14-way header used on existing
ARM header cards. Newer ARM header cards use the 20-way Multi-ICE interface.

 Figure 1-1: Multi-ICE unit

1.2.1 Multi-ICE power supply

Power is supplied to the Multi-ICE unit via pin 2 of the 20-way IDC connector. This is
normally fed by the target Vdd.

Note The target Vdd must not have a series resistor in the feed to pin 2.

If the target supply voltage (minimum 2V@250mA) or its current capability is too low, an
external power supply is required. You can calculate the approximate current using this
formula:

If the 20-way to 14-way adaptor is being used, there is a jumper connection available for
connecting an external power supply.

Yellow LED busy status

Green LED power indicator

JTAG
interface

Parallel
port

80mA
5V

t etVarg
---------------------------×
1-4 User Guide
ARM DUI 0048A

Getting Started
1.2.2 Compatibility with existing boards

For compatibility with existing ARM boards, the following modifications are needed. These
modifications do not make the board incompatible with the EmbeddedICE interface unit.

The following must be shorted:

• resistor R1 on the ARM7TDMI header card (HHI-0016B) for the ARM Development
Board (HBI-0011B)—only if modification box number 1 is not marked with ‘X’

• resistor R12 on the ARM PIV7T board (HBI-0008B)

• resistor R53 on the ARM PIE7 board (HBI-0004B)

To use Multi-ICE with Piccolo on an ARM Development Board, the following arrangement is
also required:

• link 14 on the PID must be shorted between A and C, and a 1kΩ resistor inserted
between B and C

Notes (1) The ARM Development Board mentioned above is also known as the PID board.

(2) If the ARM Development Board is not manually reset by using the red reset button, the
user may occasionally experience problems loading and running an image. This is because
power up does not always provide a clean reset when used with a PC power supply.

For details on loading an image, see 4.4.1 Loading an image on page 4-11, and for details
on running an image, see 4.9.2 Running an image on page 4-41.
User Guide
ARM DUI 0048A

1-5

Getting Started
1-6 User Guide
ARM DUI 0048A

This chapter describes how Multi-ICE uses configuration data and interacts with devices and
debug software. It details the differences between Multi-ICE and EmbeddedICE and also
explains how Multi-ICE remains synchronous with all target devices.

2.1 Introduction 2-2
2.2 Multi-ICE Configuration Data 2-5
2.3 Debugging Using Multi-ICE 2-9

2.4 Adaptive Clocking 2-10

 Multi-ICE Concepts2
2-1User Guide
ARM DUI 0048A

Multi-ICE Concepts
2.1 Introduction
Multi-ICE is the latest EmbeddedICE compatible debug solution from ARM. It comprises:

• an interface unit which connects between the parallel port of a PC and the JTAG
interface of an ASIC with debug and EmbeddedICE capability

• software to allow an ARM debugger to communicate with the interface unit.
The software has 2 major components:

- the Multi-ICE Server

- a DLL for the Multi-processor Debugger for Windows (MDW)

Multi-ICE is specifically designed to be used with multiple ARM and ARM+DSP/Piccolo
ASICs, but single cores are also supported.

This document assumes you have some knowledge of JTAG technology. If you need more
information on JTAG, please refer to the IEEE Standard 1149.1 on JTAG technology.

2.1.1 Features of Multi-ICE

The main features of Multi-ICE can be summarized as follows:

• debugger connections to multiple cores on the same ASIC

• stored or automatic configuration

• networked connections

• rapid code download

• low-voltage target interface operation

• remains synchronized with cores using “sleep” modes

• small, lightweight unit improves ease of use

• additional power supply not normally required (powered from target)

• simple parallel port connection

• software-configurable JTAG rate to support slow- or variable-speed clock devices

• easy software upgrades—100% host-based software

• designed to integrate with third-party elements (for example, non-ARM DSPs) by
providing open interfaces for user-supplied debuggers

• extra user input/output bits for user-supplied drivers
2-2 User Guide
ARM DUI 0048A

Multi-ICE Concepts
2.1.2 Comparing Multi-ICE and EmbeddedICE

The Multi-ICE system is similar to EmbeddedICE interface unit system except that, whereas
the EmbeddedICE interface unit contains a processor and software, the Multi-ICE interface
unit contains no processor and the interface software runs on the host PC. There are many
advantages to this approach. These include:

• a smaller, lighter interface unit with a lower power consumption (Multi-ICE is
normally target powered)

• easier updating of software

• more flexible interfaces

2.1.3 Multi-ICE Server

The Multi-ICE Server provides virtual connections to single processors on a multi-processor
ASIC and manages the interdependencies.

The Multi-ICE Server runs on a PC with the Multi-ICE interface unit attached, (this is then
known as the Server PC). The Server is responsible for driving the hardware through the
PC’s parallel port, using a supplied low-level driver. The Server also exposes and manages
virtual connections—via an RPC (remote procedure call) interface—to single processors on
the target ASIC that debuggers use to access individual processors.

The debugger connects to a single processor through a single connection to the Server, and
has no knowledge of other processors on the ASIC or other debuggers. This is achieved
using a configuration file that defines the content of the ASIC. If the attached ASIC contains
only ARM processors, an Auto-configure feature on the Server can write the configuration
file with no user intervention.

 Figure 2-1: Client-Server relationship

MDW

Multi-ICE Server

DLL

Multi-ICE

Debugger

Software on Host PC

Multi-ICE hardware
User Guide
ARM DUI 0048A

2-3

Multi-ICE Concepts
2.1.4 Multi-ICE DLL for MDW

Multi-ICE is supplied with the Multi-processor Debugger for Windows (MDW), which is a
multi-processor version of ADW.

The Multi-ICE DLL replaces the remote_a / remote_d DLL used by the ARM Debugger
for Windows (ADW) and connects MDW to the Multi-ICE Server using Remote Procedure
Calls (RPC). This means that the debugger can be run on the same machine as the Server
or on another machine on the same network as the Server PC. It is even possible to connect
a debugger through a modem, but this is extremely slow.

The transport mechanism used is TCP (the machines must be set up to provide TCP/IP
network services). This is true even when used locally, as the RPCs are still used for the
connection between the debugger and Server. In this case, localhost is used as the
Server location and Windows routes the packets between the two applications. The DLL
interrogates the Server to find out what the ASIC contains and the user can then choose
which processor to connect to each debugger.
2-4 User Guide
ARM DUI 0048A

Multi-ICE Concepts
2.2 Multi-ICE Configuration Data
Multi-ICE requires configuration information about the devices on the ASIC; it needs this
data to direct debugger calls to the correct device, independent of any other devices on the
ASIC. This is achieved by manipulating the contents of the TAP controllers’ Instruction
Registers (IR). Multi-ICE needs to know the length of the IR register for each device, and
already has configuration data on all ARM devices, which are held in a supplied file called
IRlength.arm. This defines the length of IR registers for ARM TAP controllers when
connected to ARM devices.

There are two ways to create configuration information:

• automatically, using the menus on the Multi-ICE Server

• manually, by creating a text file containing configuration data and loading it into the
Multi-ICE Server

2.2.1 Automatic configuration

If all cores are ARM cores, Multi-ICE automatically creates the configuration file by scanning
the ASIC, referring to the IRlength file, and writing back data about the devices it finds.

Note Autodetection of 710T/720T/740T sometimes gives UNKNOWN, as the processor cannot
be stopped before reading CP15 r0. This can be prevented by resetting the processor.

2.2.2 Manual configuration

A configuration file is a text file with the file suffix .cfg. You can store the file anywhere on
your machine; you are prompted for its name during the configuration.

The configuration file contains information on:

• TAP controllers on the ASIC

• devices attached to each TAP controller

• an optional title for the configuration

• optional JTAG timing information

• options to control which operations are performed during configuration

2.2.3 Relationship between Multi-ICE configuration items

Figure 2-2: Relationship between configuration information shows how Multi-ICE uses
configuration files to configure an ASIC.

1 Multi-ICE either scans the ASIC or reads a configuration file to gather the names
of the devices being used.

2 It then refers to the IRlength file and uses these device names to look up the
length of the IR register for each device.

With this information, and any optional timing parameters, Multi-ICE can configure the
Server and draw a pictorial representation of the devices.
User Guide
ARM DUI 0048A

2-5

Multi-ICE Concepts
 Figure 2-2: Relationship between configuration information

; ARM7 series cores
ARM703T=4
ARM70DI=4
ARM7TDMI=4
ARM710T=4
ARM720T=4
ARM740T=4

; ARM9 series cores
ARM9TDMI=4
ARM920T=4
ARM940T=4
...
...

[TITLE]
Test TAP Configuration

[TAP 0]
ARM7TDMI

[TAP 1]
ARM9TDMI

[TAP 2]
ARM720T
Piccolo

[Timing]
High=100
Low=50
Adaptive=ON;Use RTCK

IRlength.arm

Configuration file

Automatic Configuration
(scanning ASIC)

Multi-ICE
Server
2-6 User Guide
ARM DUI 0048A

Multi-ICE Concepts
2.2.4 The IRlength file

Information on ARM devices is held in the IRlength file in the Multi-ICE directory. This file
contains a definition of the number of bits in the TAP controller’s IR register for each core.
Using this list, Multi-ICE can create a virtual connection to each device.

Here is an extract from the supplied IRlength file:

; ARM7 series cores
ARM70DI=4
ARM7TDMI=4
ARM7TDMI-S=4
ARM710T=4
ARM720T=4
ARM740T=4

; ARM9 series cores
ARM9TDMI=4
ARM920T=4
ARM940T=4

; Other devices
Piccolo=0 ;Shares its TAP controller with the host processor

Counting IR bits

The IR register is accessed serially through the ASIC’s TDI and TDO pins so the register
width (number of bits) is described as the register length. This information is used to
calculate the total number of bits that must be shifted from TDI through TDO for
multiprocessor ASICs that have the TAP controllers serially chained.

For example, if three ARM7TDMI cores (each with their own TAP controllers) are fabricated
onto a single ASIC, the TAP controllers have their TDI-TDO signals serially chained. The
four bits of each IR register appear in series, giving a total chain length of 12 bits.

 Figure 2-3: Serial chaining of TAP controllers

TDI

TDO

TMS

TCK

TDI TDO

TMS TCK

TAP controller 0

TDI TDO

TMS TCK

TAP controller 1

TDI TDO

TMS TCK

TAP controller 2

IR = 4 bits IR = 4 bits IR = 4 bits + + = 12 bits
User Guide
ARM DUI 0048A

2-7

Multi-ICE Concepts
Shared TAP controllers

A value of 0 indicates that the IR is shared with another processor; two or more devices can
share one TAP controller.

For example, ARM’s Piccolo DSP coprocessor can only be used in conjunction with a host
processor. It shares the host’s TAP controller so the number of bits that must be scanned
through the TAP when the IR is selected, is no more than for the processor alone.

; Other devices
Piccolo=0 ;Shares its TAP controller with the host processor

Furthermore, the IR length is determined by the host processor entry in this file, so any IR
length for a Piccolo has no meaning.

2.2.5 Configuring non-ARM devices

Manual configuration

Any drivers that are referenced in the configuration file have to be present in the IRlength
file, or Multi-ICE displays an error when the file is loaded.

User-defined devices can be accommodated if they are named in the IRlength file, and
the device referenced in the configuration file.

For example, it you want to add a DSP (with its own TAP controller) to the scan path, you
must make an entry at the end of the IRlength file to define the IR length of the DSP’s TAP
controller:

; Other devices
DSP=5

This entry means the driver called DSP requires five extra bits in the scan chain in order to
bypass the DSP’s TAP controller when the debugger wants to access the ARM devices.

The driver name ‘DSP’ can now be used in the configuration file without error.

Automatic configuration

If you use the automatic configuration facility and a non-ARM device is detected, the Server
looks for a file called UserdrvN.txt in the Multi-ICE directory (where N is a single-digit
number that gives the length of the IR register). This text file contains a single word
(the device name), and is displayed on the Server in the box for that TAP controller. This
name is also exported to the debugger so that a connection can be made to the device.

If there is no file for the IR length found, UNKNOWN is displayed.

For example, a device called NEWCHIP has an IR length of 6. The text file is called
Userdrv6.txt and contains only the word NEWCHIP.

This method works if there is only one unknown device with the same IRlength on an
ASIC.
2-8 User Guide
ARM DUI 0048A

Multi-ICE Concepts
2.3 Debugging Using Multi-ICE
Figure 2-4: Core debugging session gives a pictorial overview of how you can debug
multiple cores in one debugging session.

The Server can be accessed by a debugger running on the same machine (localhost),
or by remote users.

 Figure 2-4: Core debugging session

RDI

TAPOp over RPC

JTAG

Parallel

Multi-ICE Server Application

ARM
Core

Multi-ICE
Hardware

ARM
Core

DSP
Core

ASIC

User supplied

DSP debugger

ARM
Core

MDW

Multi-ICE
DLL

MDW

Multi-ICE
DLL

MDW

Multi-ICE
DLL
User Guide
ARM DUI 0048A

2-9

Multi-ICE Concepts
2.4 Adaptive Clocking
Adaptive Clocking is a feature which ensures that Multi-ICE never loses synchronization
with the target device, whatever the clock speed.

To achieve this, Multi-ICE uses two signals, TCK and RTCK.

 Figure 2-5: TCK and RTCK signals

When Adaptive Clocking is enabled, Multi-ICE issues a TCK signal and waits for the RTCK
(Returned TCK) to come back. Multi-ICE does not progress to the next TCK until RTCK is
received.

As a simple example, Figure 2-6: RTCK with simple loopback shows how Multi-ICE uses
RTCK to remain synchronous with the target over a short cable. The cable delay is minimal.

 Figure 2-6: RTCK with simple loopback

Multi-ICE Target

TCK

RTCK

TCK

RTCK

t TCK high t TCK lowtD tD

t TCK high = programmed TCK high period

t TCK low = programmed TCK low period

t D = loopback cable delay

TCK

RTCK
2-10 User Guide
ARM DUI 0048A

Multi-ICE Concepts
Using the same approach, Adaptive Clocking solves synchronization problems caused by:

• very long cables

• variable clock-rate devices

• TrackingICE

Note If Adaptive Clocking is set to ON (either by a configuration file, or via the JTAG settings
dialog box—see 3.8 Clocking on page 3-20) and RTCK is not correctly driven, MDW will
report the error:

Hardware interface timeout. Please reconnect to server.

The server does not perform a check to ensure that this setting is made correctly, as this
would be intrusive to the target.

2.4.1 Very long cables

With a long cable between Multi-ICE and the target device, there is a delay before the target
receives a signal from Multi-ICE. Without Adaptive Clocking, Multi-ICE would keep issuing
TCK signals without any indication that the signals were being received by the target, and
could lose synchronization with the target.

 Figure 2-7: RTCK over a very long cable

When Adaptive Clocking is enabled, Multi-ICE waits for RTCK before progressing to the
next TCK. This ensures that the target has received and acknowledged the previous TCK
signal.

TCK

RTCK

t TCK high

t TCK high = programmed TCK high period

t TCK low = programmed TCK low period

t D = loopback cable delay

t TCK lowtD tD tD

TCK

RTCK
User Guide
ARM DUI 0048A

2-11

Multi-ICE Concepts
2.4.2 Variable clock-rate devices

The adaptive clocking feature allows Multi-ICE to operate with variable clock rate devices.
Using a flip flop, the Master Clock signal for the target device (MCLK) allows the TCK from
Multi-ICE only when the target is ready. This also permits the RTCK signal to return to
Multi-ICE and trigger the next TCK.

The speed of the target device is therefore taken into account and there is no loss of
synchronization. At high speeds, there is hardly any delay, as MCLK is running fast. At low
speeds, the delay is matched to the sleep mode of the target device.

 Figure 2-8: RTCK and a variable clock device

D QTCK

RTCK

MCLK

JTAG I/F

CPU CLK

MCLK

TCK

RTCK

t TCK high = programmed TCK high period

t TCK low = programmed TCK low period

t TCK high t TCK low
2-12 User Guide
ARM DUI 0048A

Multi-ICE Concepts
2.4.3 TrackingICE

Adaptive Clocking deals with the problem of synchronous and asynchronous clocks by using
a flip flop to turn asynchronous TCK signals into synchronous signals. The Master Clock
signal (MCLK) controls the TCK signals so that they become synchronous; this then allows
the RTCK to return to Multi-ICE with no loss of synchronization.

 Figure 2-9: RTCK and TrackingICE

D QTCK

RTCK

MCLK

JTAG I/F

CPU CLK

JTAG I/F

CPU CLK

MCLK

TCK

RTCK

t TCK high

t TCK high = programmed TCK high period

t TCK low = programmed TCK low period

t TCK low
User Guide
ARM DUI 0048A

2-13

Multi-ICE Concepts
2.4.4 Other features of Adaptive Clocking

• To use Adaptive Clocking, you need to connect TCK and RTCK.

• When you use the automatic configuration function to scan the ASIC, this issues a
TCK signal and waits for a returned RTCK from the target. If RTCK comes back,
the automatic configuration function enables Adaptive Clocking. If there is no
RTCK within 1ms, automatic configuration turns Adaptive Clocking off.
Automatic configuration is described in 3.3.2 Automatic configuration on page
3-9.

• When you are downloading code to a variable speed device, you can ensure that
the download happens as quickly as possible by selecting Set on Download from
the User Output Bits dialog. The user output bit can then be used to speed up the
target MCLK during download by adding further external logic. This is described in
3.6 User Output Bits on page 3-17.
2-14 User Guide
ARM DUI 0048A

This chapter describes how you use Multi-ICE.

3.1 Starting Multi-ICE 3-2

3.2 Overview of Multi-ICE Server Menus 3-4
3.3 Multi-ICE Server Configuration Files 3-9
3.4 Connecting an ARM Debugger to the Multi-ICE Server 3-13

3.5 Setting Ports 3-16
3.6 User Output Bits 3-17
3.7 User Input Bits 3-18

3.8 Clocking 3-20
3.9 Run Control 3-22
3.10 Error Messages 3-25

Using Multi-ICE3
3-1User Guide
ARM DUI 0048A

Using Multi-ICE
3.1 Starting Multi-ICE
After you have installed Multi-ICE on your machine, the following menu options are
available, but the options shown depend on the installation options you have selected:

If only the Source files for non-ARM debuggers option was selected during installation,
the Multi-ICE folder will not be added to the programs menu.

To start Multi-ICE:

1 Click on the Multi-ICE Server option, which displays the Multi-ICE Server window.
This window shows the TAP configuration area, User Input Bits and Debug
window:

The Multi-ICE menu options are explained in section 3.2 Overview of Multi-ICE
Server Menus on page 3-4.

TAP configuration area

User Input bits

Debug Window
3-2 User Guide
ARM DUI 0048A

Using Multi-ICE
2 Configure the Server, as described in section 2.2 Multi-ICE Configuration Data
on page 2-5.

3 If required, start the Multi-processor Debugger for Windows (MDW). This displays
the MDW window:

For information on how to connect to the MDW, refer to section 3.4 Connecting an
ARM Debugger to the Multi-ICE Server on page 3-13.

Note This option is only available if you installed the Debugger from the installation CD.

MDW is described in Chapter 4, Multi-processor Debugger for Windows (MDW).

3.1.1 Problems starting Multi-ICE server

Networking errors may occur if the network configuration has not been fully set up, or if a
DNS lookup fails because there is no network currently connected. In the Control Panel,
select Network to display the network settings. In Windows 95, access the ‘Configuration’
tab and then select the TCP/IP option to display the TCP/IP configuration. You may find that
if your PC does not have a network connection, you will have to set up a Hosts file (in
C:\Windows for Windows 95) which aliases the PC/DNS domain name to the localhost
IP address.
User Guide
ARM DUI 0048A

3-3

Using Multi-ICE
3.2 Overview of Multi-ICE Server Menus
This section gives an overview of the menu options on the Multi-ICE Server.
Figure 3-1: Multi-ICE Server menu options shows the sub menus and their options:

 Figure 3-1: Multi-ICE Server menu options

3.2.1 File menu

The File menu displays the following options:

Load
Configuration

displays a dialog box that you use to enter the name and path of a
configuration file. This option is used for the manual configuration of
Multi-ICE. This is described in 2.2.2 Manual configuration on page
2-5.
3-4 User Guide
ARM DUI 0048A

Using Multi-ICE
3.2.2 View menu

The View menu controls the display of the Multi-ICE Server window:

Auto Configure interrogates the ASIC and creates a configuration file naming all
devices found. This is described in 2.2.1 Automatic configuration
on page 2-5. Unrecognized devices are marked as UNKNOWN, but
you can add these to a lookup table, as described in 2.2.5
Configuring non-ARM devices on page 2-8.
Note that autodetection of 710T/720T/740T sometimes gives
UNKNOWN, as the processor cannot be stopped before reading
CP15 r0. This can be prevented by resetting the processor.

Log turns RPC logging on or off. Data is written to the log file specified in
Set Logfile.

Set Logfile displays a dialog box which you use to enter the name and path of
a log file.

Recent File List displays a list of the four most recent configuration files you have
used.

Exit quits from the Multi-ICE Server.

Toolbar turns the tool bar on or off. The tool bar gives you quick access to the
following functions:

creates an automatically generated configuration file.

prompts you for the name of a configuration file.

displays information about the current version of Multi-ICE.

Status Bar turns the status bar on or off. The Status bar displays information on the
current state of Multi-ICE.

RPC Calls enables or disables the display of all Remote Procedure Calls (RPC) to the
debug window.

Clear Debug
Window

clears all text in the debug window.
User Guide
ARM DUI 0048A

3-5

Using Multi-ICE
3.2.3 Run Control menu

The Run Control menu controls the stopping and starting of cores. The options from this
menu are described in detail in section 3.9 Run Control on page 3-22.

3.2.4 Connection menu

The Connection menu lists all TAP controllers in use and gives you the option to kill each
connection individually.

3.2.5 Settings menu

The Settings menu allows you to control the parallel port selection, user output bits, JTAG
settings and start-up options.

Independent makes all configured devices behave independently. There is no
interaction between devices.

All Run starts all devices together.

All Run/Stop all configured devices run if all debuggers have requested to start;
all configured devices stop if only one of the devices stops.

Custom makes configured devices interact as customized by the user.

Set-up
Custom

displays a dialog that allows you to specify the way in which devices
interact. See section 3.9.1 Setting up interaction between devices on
page 3-22 for more information.

Load Settings displays a dialog box that is used to enter the name and path of a file
comprising previously-saved settings.

Save Settings displays a dialog box by which the Run Control settings can be saved to a
specified file.
3-6 User Guide
ARM DUI 0048A

Using Multi-ICE
Port Settings displays a dialog box that you use to select the required parallel port
address, with the option of forcing 4-bit access. It also shows the current
port mode. Port settings are described in more detail in section 3.5
Setting Ports on page 3-16.

User Output Bits displays a dialog to control the user output bits. These bits correspond
to two logic-level outputs available from the user I/O connector (see 3.6
User Output Bits on page 3-17 and Appendix B, User I/O Pin
Connections). These signals can be used to remotely control user logic
at the Server location.

JTAG Settings displays a dialog that you use to set the clock speed. The clock speed
can be selected from pre-set frequencies, or selected by the user either
by using the Set Periods Manually option, or by including the
information in a configuration file. See section 3.8 Clocking on page
3-20 for more information.
If timing information is included in the configuration file, it is selected
automatically.

Start-up options displays a Start-up Options dialog box as shown below:
User Guide
ARM DUI 0048A

3-7

Using Multi-ICE
3.2.6 Help menu

The Help menu gives you access to information on Multi-ICE.

Portmap Service if you select this option, when you next start the Multi-ICE Server the
Portmap program will also start. If the Portmap Service box is not
checked, the portmap service will have to be manually started from the
Multi-ICE program folder before the Server is started, unless a
portmapper service is provided by another application.
Note that if the automatic start of the portmap service is not selected
and a portmapping service is not being provided by another
application, no warning is provided. The result is that MDW will fail to
connect to the Server, and after some time the Server will report that a
fatal rpc error has occurred.
To overcome this:

1. Start the Multi-ICE Server again.
2. Select the Portmap Service option.
3. Close the Multi-ICE Server.
4. Restart the Multi-ICE Server.

None if this is chosen, no auto configuration or load configuration file action
is performed (see entries below).

Auto-Configured this option creates a configuration file naming all devices found, and is
described in 2.2.1 Automatic configuration on page 2-5.
Unrecognized devices are marked as UNKNOWN, but you can add
these to a lookup table, as described in 2.2.5 Configuring non-ARM
devices on page 2-8.

Load
Configuration

provides access to a dialog box that you use to enter the name and
path of a configuration file. This option is used for the manual
configuration of Multi-ICE, and is described in 2.2.2 Manual
configuration on page 2-5.

Help Topics starts Multi-ICE help.

About Multi-ICE Server displays information on the hardware and parallel port driver.
3-8 User Guide
ARM DUI 0048A

Using Multi-ICE
3.3 Multi-ICE Server Configuration Files
Multi-ICE uses a configuration file to store information on the devices on the board.
Multi-ICE needs configuration data to select the correct driver. It already has configuration
data on the supported ARM devices.

There are two ways to create a configuration file.

• automatically, using the menus

• manually, by creating a text file containing configuration data and loading it into
Multi-ICE, as described in section 2.2 Multi-ICE Configuration Data on page 2-5

3.3.1 Supported devices

The supported processors at the first release of Multi-ICE are:

• ARM7TDMI

• ARM7TDMI-S

• ARM70DI

• ARM710T

• ARM720T

• ARM740T

• ARM9TDMI

• ARM940T

• Piccolo DSP coprocessor

Please contact ARM for the latest information regarding support of other processors.

3.3.2 Automatic configuration

If all cores are ARM cores, Multi-ICE automatically creates the configuration file by scanning
the ASIC and creating the file autoconfig.cfg. This contains information on each TAP
controller. Multi-ICE already has data on ARM devices, and if you use non-ARM devices on
your board, you can declare these to Multi-ICE so that you can still use the automatic
configuration facility. This is described in 2.2 Multi-ICE Configuration Data on page 2-5.

You create a configuration file automatically by selecting the following menu item or shortcut:

If all devices on the board are recognized, Multi-ICE displays a pictorial representation of the
devices found. Figure 3-2: Pictorial display of configured devices on page 3-10 shows
a configuration with four devices.
User Guide
ARM DUI 0048A

3-9

Using Multi-ICE
These devices are:

• two ARM7TDMIs

• one ARM9TDMI

• one ARM720T, with Piccolo

 Figure 3-2: Pictorial display of configured devices

3.3.3 Information on connected cores

You can access information on the connected cores by double-clicking on the TAP controller
name displayed on the schematic. The schematic diagram also shows the state of each of
the cores:

[S] denotes that the core is stopped

[R] denotes that the core is running

[D] denotes that the core is downloading

[X] denotes that the core state is unknown (no debugger connected)
3-10 User Guide
ARM DUI 0048A

Using Multi-ICE
3.3.4 Creating a configuration file

Multi-ICE needs configuration data to calculate the length of the scan chain, by adding the
length of each IR register it finds on the ASIC. This information is held in a file called
IRlength, which you can edit to store information on other devices that you use—for
example, DSP. This file is stored in the Multi-ICE directory chosen at installation. This file is
further described in section 2.2 Multi-ICE Configuration Data on page 2-5.

A configuration file is a text file with the file suffix .cfg. You can store the file anywhere on
your machine; you are prompted for its name during the configuration. To create a
configuration file, enter the following information into a text file:

• A title for the configuration, which is displayed with the pictorial representation of
the configuration. This title is optional.

• And for each device:

- the unique number of the TAP controller for each device

- the device name—in the case of a non-ARM core, this must correspond to the
device name added to the file IRlength.arm

- TAPINFO setting (optional)

- any special timing or clocking information (optional)

3.3.5 Example configuration file

The following shows an example of a configuration file with all types of data:

[TITLE]
Test TAP Configuration

[TAP 0]
ARM7TDMI

[TAP 1]
ARM9TDMI

[TAP 2]
ARM720T
Piccolo

[TAPINFO]
YES

[Timing]
High=100
Low=50
Adaptive=ON ;Use RTCK
User Guide
ARM DUI 0048A

3-11

Using Multi-ICE
A TAPINFO option is included in a .cfg file to provide flexibility for ASIC developers during
testing. When set to YES, the TAPINFO denotes that after loading a .cfg file, the Server
interrogates the ASIC to gather details of each core. This can be viewed by double-clicking
on a TAP controller within the Server Configuration window.

When the Autoconfigure facility is used, TAPINFO is always provided; the default for load
configuration is TAPINFO=NO.

For more information on timing parameters, see 3.8 Clocking on page 3-20.

3.3.6 Loading a configuration file

To load a configuration file, select the Load Configuration File option from the File menu,
and enter the name and location of the file to load in the dialog displayed. If all devices in
the file are recognized, Multi-ICE displays a pictorial representation of the devices found.
3-12 User Guide
ARM DUI 0048A

Using Multi-ICE
3.4 Connecting an ARM Debugger to the Multi-ICE Server
After loading a configuration file or using the Auto-Configure option, connect the debugger
to the Multi-ICE Server. This is detailed below.

1 Select Configure Debugger from the Options menu in the MDW window.
This displays the Debugger Configuration window:

Select the Target tab to display this menu. The Debugger and Context tabs are
described in Chapter 4, Multi-processor Debugger for Windows (MDW).

2 Set the Target Environment to Multi-ICE and select Configure. This displays the
Multi-ICE Configuration dialog box shown on the following page.

3 Add the following information into the text boxes:

Location of Multi-ICE
Server

This informs the debugger where the Server is
running.

Enter localhost if the Server is running on the
same PC as MDW.

Enter the target PC’s network ID if the Server is
remote from your PC. Enter the name exactly as it
appears in the Network Neighborhood.
For example:

PC146

Alternatively, you can specify an IP address.
User Guide
ARM DUI 0048A

3-13

Using Multi-ICE
Processor Driver
Selection

This list box is used to choose the desired processor
device (or “core”) for connection, and you should
select a device from the list displayed. The list of
devices corresponds to those shown in the TAP
configuration area on the Multi-ICE Server window.
By means of the Show All/Show Free toggling
button, the listbox can be configured to show either:

• all devices on the Server
• unconnected devices

If all devices are displayed, those available are
shown in black, while connected devices are shown
in red.
If a Piccolo coprocessor is selected, the
corresponding ARM device is also claimed
automatically.

Connection Name (optional) Enter a name for this connection. This
helps you identify which connection you are working
with. The name is displayed in the Server’s debug
window on connection.
3-14 User Guide
ARM DUI 0048A

Using Multi-ICE
4 Click on OK. You will return to the Debugger Configuration dialog box.

5 Click OK again to connect to the target processor. If the connection is successful,
the device name turns red on the schematic and connection information is
displayed in the Server console window. Otherwise, an error message is displayed.

Channel Viewers Enable or disable the selected Channel Viewer DLL.
See 4.8.5 Channel viewers on page 4-37 and
Application Note 38 (ARM DAI 0038) for more
information on Channel Viewers.

Add adds a Channel View DLL

Remove removes the selected DLL
User Guide
ARM DUI 0048A

3-15

Using Multi-ICE
3.5 Setting Ports
This section describes how you use the Port Settings dialog. This is accessed from the
Settings menu.

Note The Win 95 driver does not use ECP mode, as the Windows ECP-aware driver interferes
with the operation of the Multi-ICE driver.

3.5.1 Port address

The parallel port address to be used can be one of:

3.5.2 Force 4-bit access

Forces the parallel port to use 4-bit data transfer.

AUTO automatically selects the parallel port to use

LPT1 selects LPT1 as the parallel port to use

LPT2 selects LPT2 as the parallel port to use
3-16 User Guide
ARM DUI 0048A

Using Multi-ICE
3.6 User Output Bits
The User Output Bits correspond to two TTL logic-level outputs available from the user I/O
connector (see Appendix B, User I/O Pin Connections). These signals can be used to
remotely control user logic at the Server location.

You access the User Output Bits dialog box from the Settings menu.

3.6.1 Bit settings

You see changes to the User Output Bits as soon as you click on them. You do not have to
click on OK for the changes to take effect.

There are three common settings for Bits 1 and 2:

In addition:

3.6.2 Tap position

You can select which TAP controller to use with the User Output bits by selecting its number
from the Tap Position menu option. All available TAP controllers are listed

Set Low turns the Bit permanently off (LOW)

Set High turns the Bit permanently on (HIGH)

Set by Driver enables the output bits to be controlled by the TAPOp procedure
calls TAPOp_writeMICEUser1 and TAPOp_writeMICEUser2.
These are described in Chapter 5, TAPOp Procedure Calls.

Set on
Download

Bit 1 can optionally be set HIGH while a debugger connection
is downloading to the particular TAP controller

Set on Go Bit 2 can optionally be set HIGH while a debugger connection
is executing an image file on a specified TAP controller.
User Guide
ARM DUI 0048A

3-17

Using Multi-ICE
3.7 User Input Bits
The User Input Bits correspond to two TTL-level inputs at the user I/O connector. These
input signals are available for use by user applications. See Appendix B, User I/O Pin
Connections for further information.

The Multi-ICE JTAG port automatically adapts its input and output thresholds to the voltage
levels in the target system (based on the VTref pin). The inputs on the Multi-ICE user I/O
connector operate at standard TTL levels. If you need to drive one of the user-defined inputs
with a signal operating at the target system’s logic levels, the circuit shown in Figure 3-3:
Converting user-input signals to TTL levels can be used to convert this to TTL levels.

 Figure 3-3: Converting user-input signals to TTL levels

Pins 19, 17 and 15 are connected to an LM339 type comparator within the Multi-ICE unit.
The open collector comparator output (pin 19) drives the user input (pin 16), which includes
a suitable pull-up resistor. The inverting input to the comparator (pin 15) is driven by an
output from the voltage reference mirror circuit (pin 13). The non-inverting input to the
comparator (pin 17) is driven by the signal to be monitored via a small series resistor (Rin).

19 CompOut

17 Comp+

15 Comp-

13 InputVRef

1M

1M

+5V

0V

16 UserIn1

10K

+5V

1K

1 input of
74ACT245

output from
Vref mirror

R(in)
 1K

R(hyst)
220K

20 Ground

0V

Multi-ICE internal circuitryUser circuitry

User signal

User ground
3-18 User Guide
ARM DUI 0048A

Using Multi-ICE
The output of the comparator is also fed back to this input through a large resistor (Rhyst)
to provide a small amount of hysteresis (around 20mV with the values shown). A ground
reference for the input signal should be connected to pin 20 to provide a more direct return
path than via the JTAG connector.

3.7.1 Viewing the User Input Bits

These bits are shown at the bottom-right corner of the Multi-ICE Server window. Each bit is:

light green when high

dark green when low

 Figure 3-4: Status of the User Input Bits
User Guide
ARM DUI 0048A

3-19

Using Multi-ICE
3.8 Clocking
You can select the JTAG clock speed by:

• using one of the pre-set options

• selecting the clock’s high and low frequencies as defined in the configuration file.
If timing information is present in the configuration file, it is selected automatically.

Note At very low JTAG clock rates, the parallel port driver used by the Server uses a large
proportion of processing time. This causes any applications that are running to execute at a
reduced speed.

3.8.1 Using your own values

If you select the Set Periods Manually option, or include the clocking information in
a configuration file, you calculate the high and low periods using the following formula:

t = 50ns * (scale * (multiplier + 1))

You can enter values between 0–255 for the HIGH and LOW periods. The 8-bit values you
enter are split into 3 and 5 bits to form the scale (S) and the multiplier (M) values:

Multiplier value

The multiplier is formed from the lower 5 bits—in other words, values 0–31.

7 0

S S S M M M M M
3-20 User Guide
ARM DUI 0048A

Using Multi-ICE
Scale value

Use Table 3-1: Scale values for clocking speeds to obtain the scale value. SSS are the
three most significant bits.

Sample frequencies

100kHz (approx) HIGH = LOW = 162 [SSS = 5 (S = 32), M = 2]

500kHz HIGH = LOW = 19 [SSS = 0 (S = 1), M = 19]

2MHz HIGH = LOW = 4 [SSS = 0 (S = 1), M = 4]

For a list of tabulated frequencies and values, refer to A.3 TCK Frequencies and A.4 TCK
Values.

3.8.2 Adaptive clocking

Select the Adaptive Clocking function to synchronize the clock to the processor clock
outside the core. This ensures there are no synchronization problems over the JTAG
interface.

For a full description of the concept of Adaptive Clocking, see section 2.4 Adaptive
Clocking on page 2-10.

SSS Scale

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

 Table 3-1: Scale values for clocking speeds
User Guide
ARM DUI 0048A

3-21

Using Multi-ICE
3.9 Run Control
This section describes how to set up Multi-ICE to control the way devices interact. The
Set-up Custom option on the Run Control menu displays a dialog with several pages, as
described below.

Note If Run Control is required while semihosting, the debugger internal variable
$semihosting_enabled should be set to 2 (Debug Comms Channel-based Semihosting)
for correct operation.

3.9.1 Setting up interaction between devices

The pages of device numbers list all the available devices in blocks of four. These pages
allow you to set up the interaction between single devices or a range of devices. If you have
fewer than four devices on a page, “NOT VALID” is displayed for the unnumbered boxes.
3-22 User Guide
ARM DUI 0048A

Using Multi-ICE
For each device listed on the page, there are a range of control options:

 Figure 3-5: Cascade operation

Range field This is the combo box directly beneath each of the device descriptions,
and allows you to select any devices that are to be stopped by the current
device. The default option here is All Devices. If there are more than two
devices available, you can select:

• all devices

• individual device numbers

• a range of devices

For example, if you had 10 devices listed, you could stop devices 2, 5, 7,
8, and 9 using the following notation:

2, 5, 7-9

Disabled ‘Stop’ events from this device are disabled and have no control over
other devices.

Single Stops any devices in the Range field. If devices in the Range field have
Stop events set up, these events will not be actioned.

Cascade Stops any devices in the Range field. If devices in the Range field have
Stop events set up, these events will also be actioned. When device 1
stops, it will stop devices 2, 4, and 6. If devices 2, 4, and 6 are set up for
cascade operation, they will stop devices below them, and so on. For
example, Figure 3-5: Cascade operation shows that device 1 stops
three other devices, which in turn stop a further set of devices.

device 1

device 2 device 4 device 6

device 3

device 10

device 7device 5

device 11

device 8

device 9
User Guide
ARM DUI 0048A

3-23

Using Multi-ICE
Combining options

To provide finer control, you can combine options to achieve individual results. Using the
above diagram as an example:

• If device 4 was disabled, devices 5, 7, 9, 10, and 11 would not be affected by the
control options from device 1.

• If devices 4 and 5 were set to Cascade, but device 7 was disabled, the control
options from device 1 would reach device 9, but not devices 10 or 11.

• If device 6 was set to Single instead of Cascade, device 8 would not be affected
by the control options from device 1.

3.9.2 Setting up the poll rate

The Settings tab displays a page that allows you to control Multi-ICE’s poll rate so you can
find a suitable balance between optimal debug performance and the number of times
Multi-ICE polls the devices to find out their status (stop delay).

Low Maximum debug time, with minimal polling to find the status of devices.

High Maximum polling of devices, with virtually no debug time.

The default setting is midway on the scale.

Sync. start This box should be checked if you wish to start a device synchronously
with other devices that have their Sync. Start boxes checked.
3-24 User Guide
ARM DUI 0048A

Using Multi-ICE
3.10 Error Messages
The following list gives the error messages that are displayed in dialog boxes, and provides
an explanation and recovery from the error, wherever possible.

3.10.1 Server messages

An error occurred while attempting to set up the TAP configuration.

The hardware could not be configured, or the application ran out of memory.

An error occurred while opening the selected port.

An unexpected software error has occurred. Please contact technical support.

An error occurred while retrieving the hardware details. This
application will now terminate.

Please contact technical support.

An error prevented retrieval of hardware details.

Please contact technical support.

A fatal RPC error occurred. The server will now terminate.

The portmap program is not running, or the PC is not running a TCP/IP stack.

Auto-Configuration failed. Check the target power is on. Your chip
may require manual configuration.

This may be because:
- the power is off

- the Multi-ICE directory does not exist, or could not be written to. Check that the
file exists and that you have sufficient access to it.

- the chip may not be an ARM chip—you need to write a manual configuration
file. See 2.2.5 Configuring non-ARM devices on page 2-8.

Could not find the Multi-ICE hardware. Please check that the hardware
is properly connected to the parallel port and powered up.

Check that the Multi-ICE unit has power, and is connected to the PC.

If Multi-ICE is being used with an EmbeddedICE (14-way) connector:
- if power is being supplied by the target, check that the jumper on the adaptor

is correctly positioned and that the necessary resistor has been shorted

- if power is being supplied externally, check that the supply voltage is correct
and switched on

Failed to open parallel port. The port may be in use.

This may be because:
- another device is using the parallel port (for example, a printer)

- you have faulty parallel port hardware
User Guide
ARM DUI 0048A

3-25

Using Multi-ICE
Multi-ICE driver failure. Check that Multi-ICE device driver is
installed and running and there is no other Multi-ICE server running.

The driver is not present or has not started. On an NT machine, check in the
Control Panel›Devices under Multi-ICE that the driver is present and has started.
The Multi-ICE driver is started automatically by the Server when running under
Windows 95.

The server could not initialize correctly. Please close down one or
more applications and re-start.

Other applications are using system resources required by the Multi-ICE Server.

The server installation is incomplete or damaged. You may wish to
re-install the software.

The Server cannot find an entry in the registry.

The attached device is not compatible with this server.

The hardware attached is not a Multi-ICE unit.

The decision to read core information has been re-specified in file
filename at line number.

It has been specified more than once in the configuration file as to whether core
information is automatically read from the connected devices.

The selected server is not compatible with this debugger.

The ARM Multi-ICE DLL can only be used with the ARM Multi-ICE Server.

3.10.2 Debugger messages

[driver] is not an ARM core and cannot be debugged.

The specified driver name cannot be debugged with ARM tools.

The driver for [driver] could not be found.

The .MUL file corresponding to the device does not exist in the expected location.

The driver for [driver] could not be found. This was due to an
installation problem. Please re-install the Multi-ICE software.

The Multi-ICE DLL cannot find an entry in the registry.

The driver for [driver] could not be read.

This is because:
- the .MUL file corresponding to the device has been opened by another

application

- the .MUL file does not exist

- the .MUL file is corrupted or out of date

The format of the driver for [driver] is not valid.

The .MUL file corresponding to the device has been corrupted, or the .MUL file
for the device is out-of-date.
3-26 User Guide
ARM DUI 0048A

Using Multi-ICE
The Multi-ICE server on [location] cannot be found. If you wish to
use this server you should check that it has been started and the
location given correctly.

The Multi-ICE Server is not running. Check that:

- the name of the Server PC is entered correctly

- the network is functioning properly

- portmap is running on the Server PC

The Multi-ICE server on [location] does not have available the
previously selected [driver] on TAP [number]. The server
configuration may have been altered or the driver may already be
connected. Please check the Multi-ICE server if you wish to use this.

This is because:
- the set of devices connected to the Multi-ICE Server has been altered so that

the device previously being debugged is no longer present

- the device previously being debugged is still present, but attached to another
debugger

The Multi-ICE server on [location] has not been initialized.

The Server was found, but not configured (either by auto-configuration or .cfg file).

The Multi-ICE server on [location] returned an expected error of
[number]. The server may be incompatible.

The DLL and Server versions are incompatible.

The Multi-ICE server on [location] returned too much driver
information. The version of the server software may not be compatible
with your current debugger.

The DLL and Server versions are incompatible.

The previously selected Multi-ICE Server has no available devices.

All devices connected to the Multi-ICE Server are attached to other debuggers.

The server requires the driver for [driver] to be at least version
[number].0.

The Multi-ICE Server needs the debugger to use a later driver version for the
intended device. Re-install the .MUL files from the Multi-ICE installation CD.
User Guide
ARM DUI 0048A

3-27

Using Multi-ICE
3-28 User Guide
ARM DUI 0048A

This chapter gives an overview of the functions provided in the Multi-processor Debugger
for Windows. For full details of the debugger, please refer to the Software Development
Toolkit User Guide (ARM DUI 0040) and Reference Guide (ARM DUI 0041).

4.1 Introduction 4-2

4.2 MDW Concepts 4-4
4.3 The MDW Desktop 4-8
4.4 Getting Started 4-11

4.5 Debugger Configuration 4-18
4.6 Displaying Image Information 4-21
4.7 Setting and Editing Complex Breakpoints and Watchpoints 4-31

4.8 Other Debugging Functions 4-34
4.9 Using MDW with Piccolo 4-38
4.10 Working with Piccolo 4-43

4.11 Command Line Options for MDW 4-48

Multi-processor Debugger
for Windows (MDW)4
4-1User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.1 Introduction
The Multi-processor Debugger for Windows (MDW) enables you to debug your ARM
targeted image using any of ARM’s debugging systems.

MDW works in conjunction with Multi-ICE. You debug your application using a number of
windows that give you various views on the application you are debugging.

Refer to the documentation supplied with your target board for more information on
development boards.

This chapter provides:

• a basic introduction to MDW

• an overview of the terminology used in ARM debugging

• an overview of the MDW desktop and windows

• a step-by-step guide to debugging a simple application

• ways of displaying information while debugging

• an overview of more advanced debugging functions

4.1.1 Multi-ICE drivers

The following driver files are supplied for the supported ARM cores. These are stored in the
Multi-ICE directory on installation:

ARM70DI.MUL
ARM710T.MUL
ARM720T.MUL
ARM740T.MUL
ARM7TDMI.MUL
ARM7TDMI-S.MUL
ARM940T.MUL
ARM9TDMI.MUL
Piccolo.MUL

4.1.2 CP15

Multi-ICE provides support for coprocessors. The Multi-ICE DLL automatically sets up
CP15, and the read/write settings for CP15 registers are held in the relevant .MUL file. For
further information, see Appendix C, CP15 Register Mapping.
4-2 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.1.3 On-line help

When you have started MDW, you can use online Help to find information on the tasks you
are performing. You have several options for accessing the Help system:

Contents Select Contents from the Help menu to display a Table of Contents.

Search Select Index from the Help menu to display an index of all the help topics.

Help Click the Help button to get information on the dialog currently on display.

F1 Press the F1 key on your keyboard to get help on the currently active
window or the dialog box currently on display.
User Guide
ARM DUI 0048A

4-3

Multi-processor Debugger for Windows (MDW)
4.2 MDW Concepts
This section describes the terminology used throughout this chapter.

4.2.1 Backtrace

When your program has halted (for example, by your stopping the program, or setting a
breakpoint or watchpoint), backtrace information is displayed in the Backtrace Window to
give you information about the procedures that are currently active.

The following example shows the backtrace information for a program compiled with debug
information and linked with the C library:

#DHRY_2:Proc_6 line 42

#DHRY_1:Proc_1 line 315

#DHRY_1:main line 170

PC = 0x0000eb38 (_main + 0x5e0)

PC = 0x0000ae60 (_entry + 0x34)

Lines 1–3:

The first line indicates the function you are currently in. The second line indicates the source
code line from which this function was called, and similarly the third line indicates the call to
the second function.

Lines 4–5:

Line 4 shows the position of the call into your program’s main procedure, and the final line
indicates the entry point made by the C library’s call into your program and

Note A simple assembler program compiled without debug information and not linked to a C
library would show only the PC values.

4.2.2 Breakpoints

A breakpoint is a point in the code where your program will be halted by MDW. Once you
have set a breakpoint it will appear as a red marker in the window.

There are two types of breakpoints:

• a simple breakpoint that stops at a particular point in your code

• a complex breakpoint that:

- stops when the program has passed the specified point a number of times

AND/OR
- stops at the specified point only when an expression is true

You can choose to set a breakpoint at a point in the source or in the disassembled code if it
is currently being displayed, with the interleaved source option or the disassembly view. You
can also set breakpoints on individual statements on a line, if that line contains more than
one statement.
4-4 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
You can set, edit or delete breakpoints in the following windows:

• Execution

• Disassembly

• Source File

• Low-level symbols

• Command

• Backtrace

• Breakpoints

4.2.3 Disassembled code

Disassembled code is the machine code generated by the disassembly process.

You can display disassembled code in the Execution Window or in the Disassembly Window
(select Disassembly from the View menu).

You can also choose the type of disassembled code to display by accessing the
Disassembly Mode sub-menu, from the Options menu. ARM code, Thumb code or both
can be displayed, depending on your program’s image type.

4.2.4 High- and low-level symbols

A high-level symbol for a procedure refers to the address of the code generated by the first
statement in the procedure, and is denoted by the function name shown in the Function
Names Window.

A low-level symbol for a procedure refers to its call address, often the first instruction of the
stack frame initialization. You can display a list of the low-level symbols in your program in
the Low-level Symbols Window.

To indicate a low-level symbol in a regular expression, precede the symbol with @.

To indicate a high-level symbol precede it with ^.

Refer to the ARM Software Development Toolkit Reference Guide (ARM DDI 0041) for
information about predefined low-level symbols.

4.2.5 Regular expressions

Regular expressions are the notation for specifying and matching strings, similar to
arithmetic expressions. A regular expression is either:

• a single extended ASCII character (other than the special characters described
below)

• a regular expression modified by one of the special characters

You can include low-level symbols or high-level symbols in a regular expression.
User Guide
ARM DUI 0048A

4-5

Multi-processor Debugger for Windows (MDW)
The following special characters modify the meaning of the previous regular expression, and
will not work if no such regular expression is given.

* Any number of the proceeding regular expressions (including no
occurrences). For example, A*B would match B, AB and AAB.

? Either one copy of the proceeding regular expression, or nothing at all.
For example, AC?B matches AB and ACB but not ACCB.

+ At least one copy of the regular expression. For example, AC+B matches
ACB and ACCB, but not AB.

The following special characters are regular expressions in themselves:

\ Precedes any special character you want to include literally in an
expression to form a single regular expression. For example, * matches
a single asterisk (*) and \\ matches a single backslash (\). The regular
expression \x is equivalent to \x as the character x is not a special
character.

() Allows grouping of characters. For example,(202)* matches
202202202 (as well as nothing at all), and (AC?B)+ looks for sequences
of AB or ACB, such as ABACBAB.

. Exactly one character. This is different to ? in that the period (.) is a
regular expression in itself, so .* matches all, while ?* is invalid.
Note: The period (.) does not match the end-of-line character.

[] A set of characters, any one of which may appear in the search match.
For example, the expression r[23] would match strings r2 and r3. The
expression [a-z] would match all characters between a and z.

Note Pattern matching is done following the UNIX regexp(5) format, but without the special
symbols, ^ and $.

4.2.6 Search paths

If you want to view the source for your program’s image during the debugging session, then
MDW needs to know how to find the files. A search path points to a directory or set of
directories that are used to locate files whose locations are not referenced absolutely.

If you are developing your program using the ARM Project Manager, the search paths are
set up automatically.

If you are using the ARM command-line tools to build your project, you may need to edit the
search paths for your image manually, depending on the options you chose when you built it.

If for some reason the files have moved since the image was built, the search paths for these
files must be set up in the MDW, using the Search Paths Window (see Search paths on
page 4-21).

Note This version of Multi-ICE does not support directories that contain spaces. MDW will not
function correctly under some circumstances if it is installed to such directories.
4-6 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.2.7 Watchpoints

In its simplest form, a watchpoint halts a program when a specified register or variable is
changed. The watchpoint will halt the program at the next statement or machine instruction
after the one that triggered the watchpoint.

There are two types of watchpoints:

• a simple watchpoint that stops when a specified variable changes

• a complex watchpoint that:

- stops when the variable has changed a specified number of times

AND/OR

- stops when the variable is set to a specified value

Note If you set a watchpoint on a local variable, you will lose the watchpoint as soon as you leave
the function which uses the local variable.
User Guide
ARM DUI 0048A

4-7

Multi-processor Debugger for Windows (MDW)
4.3 The MDW Desktop
This section describes MDW and the windows available during your debugging session.

The MDW Desktop consists of a number of windows that are used to display a variety of
information as you work through the process of debugging your executable image. Three
windows, the Execution Window, the Command Window and the Console Window are
opened automatically when you start the debugger and remain. The Execution Window is
always open. You can open other windows by selecting the appropriate item from the View
menu. Figure 4-1: MDW at startup shows the initial display of the MDW windows:

 Figure 4-1: MDW at startup

Execution window

This window displays the source code of the program currently executing. You can:

• execute the entire program or step through the program line by line

• examine the contents of variables or registers

• change the display mode to show disassembled machine code interleaved with
high-level C source code

• display another area of the code by address

• set, edit or remove breakpoints
4-8 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
Command window

Using the Command Window, you can use armsd instructions when you are debugging your
image. Type help at the Debug prompt for information on the available commands or refer
to the ARM Software Development Toolkit Reference Guide (ARM DDI 0041).

Console window

The Console Window allows interaction between you and the executing program. Anything
printed by the program (for example, a prompt for user input) is displayed in this window and
any input required by the program must be entered here. Information remains in the window
until you select Clear from the Console Window menu. You can also save the contents of
the Console Window to disk, by selecting Save from the Console Window menu.

Note When input is required by your executable image, most MDW functions are disabled until
the required information has been entered.

4.3.1 Other available windows

Additional windows can be displayed from the View menu.

Window Type Description

Backtrace Displays current backtrace information about your program.

Breakpoints Displays a list of all breakpoints set in your image.

Debugger Internals Displays some of MDW’s internal variables. Use this window to
change the value of editable variables.

Disassembly Displays disassembled code interpreted from a specified area of
memory. The memory addresses are listed in the left-hand pane
and the disassembly code is displayed in the right-hand pane.
ARM code, Thumb code or both can be displayed.

Expression Displays the values of selected variables and/or registers.

Function Names Displays a list of the functions that are part of your program.

Locals/Globals Locals displays a list of variables currently in scope, and the
Globals Window displays a list of global variables. The variable
name is displayed in the left-hand pane, the value is displayed in
the right-hand pane.

Low Level Symbols Displays a list of all the low-level symbols in your program.

 Table 4-1: List of additional MDW windows
User Guide
ARM DUI 0048A

4-9

Multi-processor Debugger for Windows (MDW)
4.3.2 Status bar

At the bottom of the Desktop is the status bar, which provides current status information or
describes the currently selected user interface component. The Server location and the TAP
position are also displayed in the MDW status bar.

Memory Displays the contents of memory at a specified address.
Addresses are listed in the left-hand pane, and the memory
content is displayed in the right-hand pane.

Registers Displays the registers corresponding to the mode named at the
top of the window, with the contents displayed in the right-hand
pane. You can double-click on an item to modify the register’s
value.

RDI Log Displays remote debug information—for example, the low-level
communication messages between the MDW and the target
processor.

Search Paths Displays the search paths of the image currently being
debugged. You can remove a search path from this window
using the delete key.

Source Files List Displays a list of all source files that are part of the loaded image.
From this window you can select a source file that will be
displayed in its own Source File Window.

Source File Displays the contents of the source file named at the top of the
window. The line number is displayed in the left-hand pane, the
code is in the right-hand pane.

Watchpoints Displays a list of all watchpoints.

Window Type Description

 Table 4-1: List of additional MDW windows (Continued)
4-10 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.4 Getting Started
This section details the basics of debugging an executable image, including the following
debugging tasks:

• Loading an image

• Executing an image

• Stepping through an image

• Setting breakpoints and watchpoints

• Removing a breakpoint or watchpoint

• Examining and setting variables and registers

• Examining memory

• Reloading the image

• Exiting the debugger

For information on more advanced features, refer to the following:

• 4.5 Debugger Configuration on page 4-18

• 4.6 Displaying Image Information on page 4-21

• 4.7 Setting and Editing Complex Breakpoints and Watchpoints on page 4-31

• 4.8 Other Debugging Functions on page 4-34

4.4.1 Loading an image

When you load a program image, the program is displayed in the Execution Window as
disassembly code (the Command and Console Windows are also displayed), and a
breakpoint is automatically set at the entry point of the image, usually the first line of source
after the main() function. The current execution marker (a green bar indicating the current
line) is located at the entry point of the program.

Note Once you have executed your program, you must reload it to execute again. See 4.4.8
Reloading the image on page 4-17.

To load an image:

1 Select Load Image from the File menu or click the Load Image button. The Open
File dialog is displayed.

2 Select the File Name of the executable image you wish to debug, using the
Browse option if necessary.

3 Enter any command-line Arguments expected by your image.

4 Click OK.

Alternatively, if you have recently loaded your required image, your file appears as a
recently-used file on the File menu.

Note If you load your image from the recently used file list, MDW automatically loads the image
using the command-line arguments that you specified in the previous run.
User Guide
ARM DUI 0048A

4-11

Multi-processor Debugger for Windows (MDW)
4.4.2 Executing an image

You can run your program in MDW in one of two ways. First, you can execute the entire
program; MDW will halt execution at any breakpoints or watchpoints encountered. Second,
you can step through the code one line at a time, stepping into or over procedures as
needed. Stepping through your image is covered in the next section. To execute your image:

• Select Go from the Execute menu, or

• Click the Go button.

While the program executes, the Console Window is activated and the program code is
displayed in the Execution Window.

Execution continues until:

• a breakpoint halts the program at a specified point

• a watchpoint halts the program when a specified variable or register changes

• the image requires input

• the Server stops the core because of a run control option. (See 3.9 Run Control
on page 3-22 for more information)

• you stop the program by clicking the Stop button. You can then continue execution
from the point where the program stopped using Go or Step.

If the program is failing to respond, you can also abort program execution.

Notes (1) If you wish to execute your program again, you must first reload it.

(2) If you are in the ARM Project Manager (APM), you can click the Execute button: the
image will be built if necessary, the Debugger will be started, and your image will be loaded
and executed.

The executable used for debugging can be selected by changing the appropriate variable—
in other words, from the Project menu select Edit Variables for [projectname].apj . For
further details, refer to 4.4.9 Configuring the APM to invoke MDW on page 4-17.

4.4.3 Stepping through an image

If you want to follow your image’s execution more closely, you can step through the code in
the following ways:

Step to the next line of code:

• Select Step from the Execute menu, or

• Click the Step button.

The program moves to the next line of code, which is highlighted in the Execution Window.
Function calls will be treated as one statement.

If only C code is displayed, Step moves to the next line of C. If disassembled code is
interleaved with C source, Step moves to the next line of disassembled code.
4-12 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
Step In to a function call:

• Select Step In from the Execute menu, or

• Click the Step In button.

The program moves to the next line of code. If the code is in a called function, the function
source is displayed in the Execution Window, and the current code line is highlighted.

Step Out of a function

• Select Step Out from the Execute menu, or

• Click the Step Out button.

The program completes execution of the function and halts at the line immediately following
the function call.

Run execution to the cursor:

1 Position the cursor in the line where execution should stop.

2 Select Run to Cursor from the Execute menu or click the Run to Cursor button.

This executes the code between the current execution and the position of the cursor.

Note Be sure that the execution path includes the statement selected with the cursor.

4.4.4 Setting breakpoints and watchpoints

Breakpoints and watchpoints are used to stop program execution when a selected line of
code is about to be executed or when a specified condition occurs. There are two types of
breakpoints and watchpoints; simple and complex. This section discusses simple
breakpoints and watchpoints; complex breakpoints and watchpoints are discussed in 4.7
Setting and Editing Complex Breakpoints and Watchpoints on page 4-31.

Breakpoints

To set a simple breakpoint on a line of code:

• Double-click on the line where you want to set the breakpoint.

OR

1 Position the cursor in the line where the breakpoint is to be placed.

2 Select Toggle Breakpoint from the Execute menu or click the Toggle
Breakpoint button.

A new breakpoint is displayed as a red marker in the left-hand pane of the Execution
Window, the Disassembly Window or the Source File Window. If the line in which the
breakpoint is set contains several functions, the breakpoint is set on the function that you
clicked on in step 1.
User Guide
ARM DUI 0048A

4-13

Multi-processor Debugger for Windows (MDW)
In a line with several statements, it is possible to set a breakpoint on an individual statement,
as demonstrated in the following example:

int main()

{

hello(); world();
}

If you position the cursor on the word world and click the Toggle Breakpoint button,
hello will be executed, but execution will halt before world is executed.

If you want to see all of the breakpoints set in your executable image, open the Breakpoints
Window by selecting Breakpoints from the View menu.

To set a simple breakpoint on a function:

1 Display a list of function names in the Function Names Window, by selecting
Function Names from the View menu.

2 Select Toggle Breakpoint from the Function Names Window menu or click the
Toggle Breakpoint button.

The breakpoint is set at the first statement of the function. This method also works for the
Low Level Symbols Window, but the breakpoint will be set to the first machine instruction of
the function (the beginning of its entry sequence).

Watchpoints

To set a simple watchpoint:

1 Select the variable, area of memory or register you want to watch.

2 Select one of the following:
- Select Toggle Watchpoint from the Execute menu.

- Select the Toggle Watchpoint option from the window’s menu.

- Click the Watchpoint button.

If you want to see all of the watchpoints set in your executable image, open the Watchpoints
Window by selecting Watchpoints from the View menu.
4-14 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.4.5 Removing a breakpoint or watchpoint

To remove a breakpoint:

1 Double-click on a line containing a breakpoint (highlighted in red) in the Execution
Window.

2 Select Toggle Watchpoint from the menu.

OR

1 Select Breakpoints from the View menu to display a list of breakpoints in the
Breakpoint Window.

2 Select the breakpoint you wish to remove.

3 Click the Toggle breakpoint button or press the Delete key.

To remove a watchpoint:

1 Select Watchpoints from the View menu to display a list of watchpoints in the
Watchpoint Window.

2 Select the watchpoint you wish to remove.

a) Click the Toggle Watchpoint button or press the Delete key, or

b) Position the cursor on a variable or register containing a watchpoint and
right-click and select Toggle Watchpoint from the menu.

Note If you set a watchpoint on a local variable, you will lose the watchpoint as soon as you leave
the function which uses the local variable.

4.4.6 Examining and setting variables and registers

Using the Debugger, you can display and modify the contents of the variables and registers
used by your executable image. This section briefly introduces the display and modification
features. For more information on variables and registers, see 4.6.2 Debugger internal
variables on page 4-22.

Variables

To display a list of variables

• Select Local from the Variables sub-menu off the View menu or click the Locals
button, or

• Select Global from the Variables sub-menu off the View menu.

A Locals or Globals Window is displayed listing the variables currently active.
User Guide
ARM DUI 0048A

4-15

Multi-processor Debugger for Windows (MDW)
To modify a variable’s value:

1 Select Global or Local from the Variables sub-menu off the View Menu.
A Locals/Globals Window is displayed with the currently active variables.

2 Double-click on the value of the variable in the right-hand pane of the window.
The Modify Item dialog is displayed.

3 Type in the new value for the variable.

4 Click OK.

Registers

To display a list of registers:

• Select a mode from the Registers sub-menu off the View menu. The registers are
displayed in the appropriate Registers Window.

• To display a list of registers for User mode, click the User Regs button.

To modify a register’s value:

1 Select a register mode from the Register sub-menu off the View menu. The
registers for that mode are displayed in a Registers Window.

2 Double-click on the register to be modified. The Modify Item dialog is displayed.

3 Type in the new value for the register.

4 Click OK.

4.4.7 Examining memory

Using the Debugger, you can display memory locations.

To display a particular area of memory:

1 Select Memory from the View menu or click on the Memory button. The Memory
Address dialog is displayed.

2 Enter the address as hex (prefixed by 0x) or decimal.

3 Click OK.

The Memory Window is opened to display the area of memory requested.

Once you have opened the Memory Window you can display other areas of memory by
using the scroll bars or by entering another address.

To enter another address:

1 Select Goto from the Search menu or select Goto Address from the Memory
Window menu. The Goto Address dialog is displayed

2 Enter an address.

3 Click OK.

See 4.8.1 Saving or changing an area of memory on page 4-34 for more information on
working with areas of memory.
4-16 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.4.8 Reloading the image

Once you have executed your image, if you want to execute it again, you must reload it. To
reload your executable image, select Reload Current image from the File menu or click the
Reload button.

4.4.9 Configuring the APM to invoke MDW

To configure the APM to invoke MDW:

1 Open a project (settings are remembered on a project by project basis).

2 Select Project, then Edit Variables for [projectname].apj

3 Select adw from the variables list.

4 Set its value to mdw.

5 Press OK.
Note There are several APM project templates installed with MDW. These templates are identical

to those supplied with the ARM 2.11a toolkit, but invoke MDW rather than ADW. An ’M’ has
been appended to the name to indicate this.

4.4.10 Exiting the Debugger

To close the Debugger, select Exit from the File menu.
User Guide
ARM DUI 0048A

4-17

Multi-processor Debugger for Windows (MDW)
4.5 Debugger Configuration

4.5.1 Target

Use this dialog to change the configuration used by the target environments that will be used
during debugging. Accessed by selecting Configure Debugger from the Options menu.

When your changes are complete:

• click OK to save and exit

• click Cancel to ignore all changes not applied and exit

Note Apply is disabled for the Target page because a successful RDI connection has to be made
first. When you click OK an attempt is made to make your selected RDI connection, if this is
not successful, a warning is displayed.

Target Environment The target environment for the image being debugged.

Add Display an Open dialog to add a new environment to the debugger
configuration. (In order to see all .dll files, you must ensure that in
Windows Explorer, the Show all files option is selected.)

Remove Remove a target environment.

Configure Display a configuration dialog for the selected environment.

Display a more detailed description of the selected environment.
4-18 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.5.2 Debugger

Use this dialog to change the configuration used by the Debugger. Accessed by selecting
Configure Debugger from the Options menu and clicking the Debugger tab.

When your changes are complete:

• click OK to save and exit

• click Apply to save

• click Cancel to ignore all changes not applied and exit

Profile Interval This is not supported.

Source Tab Length When a source file is displayed this specifies the length of tab
used in characters.

Default Memory Map The default memory map, the file that describes your memory
layout. This is not required for Multi-ICE.

Endian Determines byte sex.

Little-endian LOW addresses have the least significant bytes.

Big-endian HIGH addresses have the least significant bytes.

Disable Splash screen When check-marked, stops display of the splash screen (the
MDW startup box) when MDW is first loaded.

Remote Startup
warning

This is not supported for Multi-ICE. The remote startup warning
is never given.
User Guide
ARM DUI 0048A

4-19

Multi-processor Debugger for Windows (MDW)
Notes (1) When you make changes to the Debugger configuration, the current execution is ended
and your program is reloaded.

(2) For information on the Context tab, refer to 4.9.1 Processor context on page 4-38.

4.5.3 ARMulator

MDW does not support the ARMulator. If you need to use the ARMulator, it is available in
the ARM Software Development Toolkit.
4-20 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.6 Displaying Image Information
Certain information can be displayed by selecting the appropriate item from the View menu:

• Breakpoints

• Watchpoints

• Backtrace

• Functions

• Debugger Internals

• Registers

The windows used to display this information are described in 4.3 The MDW Desktop on
page 4-8.

Information not available directly from the View menu is discussed in this section.

4.6.1 Source files

Search paths

If you want to view the source for your program’s image during the debugging session, the
MDW needs to know how to find the files. A search path points to a directory or set of
directories that are used to locate files whose locations are not referenced absolutely.

If you are developing your program using the ARM Project Manager, the search path for a
newly-loaded image is added to the list of paths by reading the build directory from the image
file.

If you are using the ARM command-line tools to build your project, you may need to edit the
search paths for your image manually, depending on the options you chose when you built it.

If for some reason the files have moved since the image was built, the search paths for these
files must be set up in the MDW, using the Add Path dialog (see below).

To display source file search paths, select Search Paths from the View menu.

The current search paths are displayed in the Search Paths window.

To add a source file search path:

1 Select Add a Search Path from the Options menu.

The Select a file from the required directory dialog is displayed.

2 Browse for the directory you wish to add and highlight any file in that directory.

3 Click OK.

To delete a search path:

1 Select Search Paths from the View menu. The Search Paths Window is displayed.

2 Select the path to delete.

3 Press the Delete key.
User Guide
ARM DUI 0048A

4-21

Multi-processor Debugger for Windows (MDW)
Listing source files

To display a list of the current program’s source files, select Source Files from the View
menu.

The Source Files List Window is displayed.

Source files

Once you have a listing of source files in the Source Files List Window, you can select a
source file to be displayed by double-clicking on a file name.

The file is opened in its own Source File Window.

Note You can have more than one source file open at a time.

4.6.2 Debugger internal variables

Debugger internal variables specific to Multi-ICE

The following debugger internal variables are specific to Multi-ICE:

user_input_bit1 and user_input_bit2

These variables show the state of the two user input bits. These are not polled—they show
the state at the time the Debugger Internals window was displayed.

user_output_bit1 and user_output_bit2

These variables allow the user to alter the state of the user output bits. The user can only
change these if the output bits are assigned to the TAP position to which the debugger is
connected, and if the Set by Driver option is enabled. These are set on the Server using
User Output Bits, found under the Settings menu—see 3.6 User Output Bits on page
3-17. Again, these are not polled—they show the state at the time the Debugger Internals
window was displayed.

vector_address

This provides support for WinCE-capable processors. It defaults to the Vector address that
has been set up for the current processor, by reading the V bit from CP15 Register 1 on a
WinCE-capable processor. It can be set explicitly to either 0 or 0xFFFF0000. For correct
operation, it is essential that there is readable memory at the address to which it is sent.

safe_non_vector_address

This provides support for WinCE-capable processors, and defaults to 64KB. This variable
must be set to the base address of a 64KB area of memory that is distinct from the 64KB
block of memory starting at $vector_address.
The block of memory to which it is pointed should be “safe”, in that the Multi-ICE DLL may
cause some reads from this area to occur, and these reads should be harmless. In other
words, they should not cause data aborts and should not do anything to I/O devices.
4-22 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
arm9_restart_code_address

Applicable only for ARM9T revision 0-based targets. This specifies an area of memory 32
bytes in size that Multi-ICE can use during execution restart requests. This area of program
memory must be readable and writable, and must not be used for any other purpose.

system_reset

When read, this will always be 0. If written with a non-zero value, however, the target board
will be reset using system reset. Multi-ICE will cause a system reset pulse of 250ms to occur.

cp15_cache_selected (0 or 1: 0=D-Cache, 1=I-Cache)

Only valid on Harvard-Architecture Processors. It indicates which ‘version’ of a CP15
register is read/written. For further information on accessing the CP15 registers, refer to
Appendix C, CP15 Register Mapping.

cp15_current_memory_area (0—7: 0=Memory area 0 &ct)

Selects the memory area to be used with accesses to register 6 on ARM740T and ARM940T
processors. In the case of ARM940T processors, the $cp15_cache_selected variable
decides if this is going to be a Data/Instruction area. For further information on the CP15
register, refer to Appendix C, CP15 Register Mapping.

cp_access_code_address

This specifies an area of memory of at least 40 bytes in size, that can be used by Multi-ICE
during read/write coprocessor operations. Multi-ICE will ensure that this memory is restarted
to its original values after use. This area of memory must be readable and writable.

semihosting_enabled and semihosting_dcchandler_address

The first of these two is not a new variable, but there is now a new valid value which you can
set it to. The 0 and 1 retain the same meaning as with other debug systems. The new value
is 2, which requests that Debug Comms Channel-based semihosting is used. If this is
selected, the value of $semihosting_dcchandler_address becomes significant, as
explained below. Standard semihosting remains the default.

Semihosting off (semihosting_enabled=0)

This switches semihosting off.

Standard semihosting (semihosting_enabled=1)

Standard semihosting involves setting a breakpoint either on the SWI Vector itself or
somewhere else in cooperation with the user's own SWI Handler (depending on the value
of $semihosting_vector). There is a significant drawback to this mechanism: in a
JTAG-based debugging system the processor must be halted in order to perform a
semihosting operation, and remains halted for long enough to cause problems to realtime
systems (with interrupt driven devices), often making semihosting not feasible for such
systems.
User Guide
ARM DUI 0048A

4-23

Multi-processor Debugger for Windows (MDW)
Debug Comms Channel semihosting (semihosting_enabled=2)

Debug Comms Channel semihosting, however, does not cause the target processor to stop.
Instead, a SWI Handler is installed in the target’s memory which intercepts semihosting
SWIs and sends a request for a semihosting operation to be sent up the processor’s Debug
Comms Channel. The Multi-ICE DLL notices this request and communicates with the SWI
handler on the target, requesting that memory is read and written as necessary, and when
the operation is completed, it informs the SWI handler that the operation has completed. The
SWI Handler then returns to the user’s program, and execution restarts from the instruction
after the Semihosting SWI.

Debug Comms Channel-based Semihosting does not cause the processor to halt, and the
SWI Handler resets the interrupt enabled state to that of its caller, and so this method of
semihosting should be entirely suitable for realtime systems. It is also more useful for those
systems that include more than one processor on a chip connected to a single Multi-ICE
unit, because Debug Comms Channel-based semihosting does not interfere with automatic
starting and stopping of processors, as can be requested from the Multi-ICE Server.

One disadvantage, however, is that the Debug Comms Channel cannot be used for other
purposes if Debug Comms Channel-based semihosting is enabled.

The address at which the SWI Handler is installed in the target’s memory is
$semihosting_dcchandler_address, and the SWI handler is approximately 0.75Kb in
size. The SWI handler is written to memory whenever Debug Comms Channel-based
semihosting is enabled (setting $semihosting_enabled to 2) or
$semihosting_dcchandler_address is changed and Debug Comms Channel-based
semihosting is already enabled. It is vital that there is otherwise-unused RAM in the region
where the debugger will attempt to install this SWI Handler. The default value for
$semihosting_dcchandler_address is 0x10000 less than the top of memory
($top_of_memory).

It is possible to use the Debug Comms Channel SWI Handler together with a user’s own SWI
Handler. This is done by installing the user’s own SWI Handler on the SWI Vector, and
setting $semihosting_vector to be the address of a NOP instruction in the user’s SWI
Handler, which will be executed if the SWI is a semihosting SWI (or at least not one that the
user’s code handles). The registers at that point should be exactly as they were on entry to
SVC mode when the SWI was first executed. The Debug Comms Channel SWI Handler will
then deal with returning to the caller’s code and reporting unknown SWIs.

Problems with semihosting_enabled=2

On some devices that utilize AMBA wrappers, coprocessor accesses do not work properly.
In these devices, DCC-hosted semihosting (semihosting_enabled=2) will not work. For
these devices, use semihosting_enabled=1 (stop/start semihosting).
4-24 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
Debugger internal variables non-specific to Multi-ICE

The following debugger internal variables are non-specific to Multi-ICE:

vector_catch

Indicates whether or not execution should be caught when various conditions arise. The
default value is %RUsPDAifE. Capital letters indicate that the condition is to be intercepted:

R reset

U undefined instruction

S SWI

P prefetch abort

D data abort

A address

I normal interrupt

F fast interrupt

E unused

You can also set the variable to a numeric value which is to be interpreted as a bitmap, in
the order set above.

cmdline

Argument string for the image being debugged.

rdi_log

RDI logging:

The remaining bits should be set to zero.

semihosting_vector

The address of SWI handler used for semihosting.

Bit 1 Bit 0

0 0 Off

0 1 RDI on

1 0 Device Driver Logging on

1 1 RDI and Device Logging on

 Table 4-2: RDI Logging
User Guide
ARM DUI 0048A

4-25

Multi-processor Debugger for Windows (MDW)
clock

The number of microseconds since simulation started. This is not supported by Multi-ICE.

top_of_memory

Under Angel, this variable gives the total amount of memory normally on the board. If more
memory is added to the board, change this variable to reflect the new amount of memory.

pr_linelength

The default number of characters per line (initially set to 72).

inputbase

The base for input of integer constants (initially set to 10).

format

The default format for printing integer values (initially set to %d).

sourcedir

The directory containing source code for the program being debugged. This is initially set to
the current directory unless your application was built by the ARM Project Manager, in which
case this variable points to the source directory known by APM (initially set to NULL).

result

The integer result returned by the last called function (invalid if none, or if an integer result
was not returned). This variable is read-only.

fpresult

The floating-point value returned by the last called function (invalid if none, or if a floating
point value was not returned). This variable is read-only.

type_lines

The default number of lines for the type command.

list_lines

The default number of lines for list command (initially set to 10).

examine_lines

The default number of lines for examine command (initially set to 8).

echo

This is non-zero if commands from obeyed files are to be echoed (initially set to 0).
4-26 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
icebreaker_lockedpoints

If the user writes to a breakpoint register in the EmbeddedICE macrocell, Multi-ICE will set
the appropriate bit to indicate that this breakpoint has been locked, and will not be used by
Multi-ICE for breakpoints set through the debugger. The user can then clear this bit to
indicate that Multi-ICE can again make use of this breakpoint.

Bit 1 set The user has claimed breakpoint 1

Bit 2 set The user has claimed breakpoint 2

4.6.3 Local and global variables

A list of local or global variables can be displayed by selecting the appropriate item from the
View menu; a Locals/Globals Window is displayed. You can also display the value of a
single variable or you can display additional variable information from the Locals/Globals
Window.

To display the value of a single variable:

1 Select Expression from the Variables sub-menu off the View menu.

2 Enter the name of the variable in the View Expression dialog.

3 Click OK.

Alternatively:

1 Highlight the name of the variable.

2 Select Immediate Evaluation from Variables sub-menu off the View menu or
click the Evaluate Expression button.

In both cases, the value of the variable is displayed in an Expression Value information box
and is recorded in the Command Window.

Note If you select a local variable that is not in the current context, an error message is displayed.
User Guide
ARM DUI 0048A

4-27

Multi-processor Debugger for Windows (MDW)
Display formats

If you are in the Locals or the Globals Window, Expressions Window or the Debugger
Internals Window, you can change the format of a variable. The format of values displayed
for variables can be modified using the same syntax as a printf format string in C. Format
descriptors include those listed in Table 4-3: Display Formats on page 4-28.

To change the format of a variable:

1 Right click on the variable and select the Change line format from the Locals or
Globals Window menu. The Display Format dialog is displayed.

2 Enter the display format.

3 Click OK.
Note If you change a single line, that line will not be effected by global changes.

Tip Leaving the Display Format dialog empty and clicking OK restores the default display
format. This is the method to revert a line format change to the global format.

Type Format Description

int Only use this if the expression being printed yields an integer:

%d Signed decimal integer (default for integers)

%u Unsigned integer

%x Hexadecimal (lowercase letters)

char Only use this if the expression being printed yields an integer:

%c Character

char* %s Pointer to character. Only use this for expressions
which yield a pointer to a zero terminated string.

void* %p Pointer (same as %.8x)—for example, 00018abc.
This is safe with any kind of pointer.

float Only use this for floating-point results:

%e Exponent notation, for example, 9.999999e+00

%f Fixed point notation—for example, 9.999999

%g General floating-point notation, for example
1.1, 1.2e+06

 Table 4-3: Display Formats
4-28 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
Note The initial display format of a variable declared as char[]= is special; the whole string is
displayed, whereas normally arrays are displayed as ellipsis. If the format is changed it will
revert to the standard array representation.

Variable properties

If you have a list of variables displayed in a Locals/Globals Window, you can display
additional information on a variable by selecting Properties from the window’s menu
(right-click on an item to display the window menu). The information is displayed in a dialog.
HIGH addresses have the least significant bytes.

Indirection

By selecting Indirect through item from the Variables menu you can display other areas
of memory.

If you select a variable of integer type, the value is converted to a pointer (using sign
extension where applicable) and the memory at that location is displayed. If you select a
pointer variable, the memory at the location pointed to is displayed. You cannot select a void
pointer for indirection.

4.6.4 Disassembly code

Disassembled code is a textual form of the machine code generated by the ARM C compiler
or assembler.

You can display disassembled code in the Execution Window or in the Disassembly Window
(select Disassembly from the View menu).

You can also choose the type of disassembled code to display by accessing the
Disassembly mode sub-menu, which is on the Options menu. ARM code, Thumb code or
both can be displayed, depending on your image.

To display an area of memory as disassembled code:

1 Select Disassembly from the View menu, or click the Display Disassembly
button. The Disassembly Address dialog is displayed.

2 Enter an address.

3 Click OK.

The Disassembly Window is opened to interpret the memory as disassembly code.
User Guide
ARM DUI 0048A

4-29

Multi-processor Debugger for Windows (MDW)
To display or hide disassembled code in the Execution Window, select Toggle Interleaving
from the Options menu.

Disassembled code is displayed in gray, the C code in black.

Once you have opened the Disassembly Window, you can display another address as
disassembled code by using the scroll bars to search for an address by value or:

1 Select Goto from the Search menu.

2 Enter an address.

3 Click OK.

Specifying a disassembly mode

The MDW tries to interpret whether disassembled code is ARM code or Thumb code, but
sometimes this is not possible, for example, if you have copied the contents of a file on disk
to memory. To specify the type of code (ARM, Thumb or both) that you want to see when
you display disassembly code in the Execution Window, select Disassembly mode from the
Options menu.

4.6.5 Remote debug information

The RDI Log Window displays remote debug information; this comprises the low-level
communication messages between the MDW and the target processor.

To display remote debug information (RDI) select RDI Protocol Log from the View menu.
The RDI Log Window is displayed.

Using the RDI Log Level dialog (select Set RDI Log Level from the Options menu) you can
select the information that will be displayed in the RDI Log Window:

Bit 0 RDI level logging on/off

Bit 1 Device driver logging on/off
4-30 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.7 Setting and Editing Complex Breakpoints and Watchpoints

4.7.1 Breakpoints

A breakpoint is a point in the code where your program will be halted by the MDW. Once you
have set a breakpoint it will appear as a red marker in the left-hand pane of a Source or
Execution window.

When you set a complex breakpoint, you specify additional conditions in the form of
expressions entered in the Set or Edit Breakpoint dialog.

This dialog contains the following fields:

File The source file that contains the breakpoint. This field is
read-only.

Location The position of the breakpoint within the source file. This field is
read-only.

Expression An expression that must be true for the program to halt, in
addition to any other breakpoint conditions. Use C-like operators
such as:

i < 10

i != j

i != j + k

Count The program halts when all the breakpoint conditions apply for
the number of times specified.

To set or edit a complex breakpoint on a line of code:

1 Double-click on the line where you want to set a breakpoint or on an existing
breakpoint position.
The Set or Edit Breakpoint dialog is displayed.

2 Enter or alter the details of the breakpoint.

3 Click OK.

The breakpoint is displayed as a red marker in the left-hand pane of the Execution, Source
File or Disassembly Window. If the line in which the breakpoint is set contains several
functions, the breakpoint is set on the function that you highlighted in step 1.
User Guide
ARM DUI 0048A

4-31

Multi-processor Debugger for Windows (MDW)
To set or edit a complex breakpoint on a function:

1 Display a list of function names in the Function Names Window.

2 Select Set or Edit Breakpoint from the Function Names Window menu.

3 The Set or Edit Breakpoint dialog is displayed. Complete or alter the details of the
breakpoint.

4 Click OK.

To set a breakpoint on a low-level symbol:

• Type break@symbolname in the Command Window, or

• Display the Low Level Symbols Window and set a breakpoint on the required
symbol.

4.7.2 Watchpoints

A watchpoint halts a program when a specified register or variable is changed.

When you set a complex watchpoint, you specify additional conditions in the form of
expressions entered in the Set or Edit Watchpoint dialog.

This dialog contains the following fields:

Item The variable or register to be watched.

Target Value The value of the variable or register that will cause the program
to halt. If this value is not specified, any change in the item’s
value will cause the program to halt, dependent on the other
watchpoint conditions.

Expression Any expression which must be true for the program to halt, in
addition to any other watchpoint conditions. As with breakpoints,
use C-like operators such as:

i < 10

i != j

i != j + k

Count The program halts when all the watchpoint conditions apply for
the number of times specified.
4-32 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
To set a complex watchpoint:

1 Select the variable or register you want to watch.

2 Select Set or Edit Watchpoint from the Execute menu.
The Set or Edit Watchpoint dialog is displayed.

3 Specify the details of the watchpoint.

4 Click OK.

To edit a complex watchpoint:

1 Display current watchpoints by selecting Watchpoints from the View menu.

2 Select the watchpoint you want to edit.

3 Modify the details as required.
User Guide
ARM DUI 0048A

4-33

Multi-processor Debugger for Windows (MDW)
4.8 Other Debugging Functions

4.8.1 Saving or changing an area of memory

To save an area of memory to a file on disk:

1 Select Put File from the File menu. The Put file dialog is displayed.

2 Select the file to write to.

3 Enter a memory area (in hexadecimal) in the From address and To fields.

4 Click Save.

5 Click OK.
Note The output is saved as a binary data file.
4-34 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
To load a file on disk to memory:

1 Select Get File from the File menu. The Get file dialog displayed.

2 Select the file you want to download.

3 Enter the start address (in hexadecimal) where the file is to be loaded.

4 Click Open.

4.8.2 Specifying command line arguments for your program

1 Select Set Command Line Args from the Options menu. The Command Line
Arguments dialog is displayed.

2 Enter the command line arguments for your program.

3 Click OK.
Note You can also specify command line arguments when you load your program in the Open File

dialog or by changing the Debugger internal variable, $cmdline.
User Guide
ARM DUI 0048A

4-35

Multi-processor Debugger for Windows (MDW)
4.8.3 Using command line debugger instructions

If you are used to using the ARM Command Line Debugger you may prefer to use the same
set of commands from the Command Window.

To open this window select Command from the View menu.

The Command Window displays a Debug: command line. You can enter ARM Command
Line Debugger commands at this prompt. The syntax used is the same as that used for
armsd. Type help for information on the available commands.

Refer to ARM Software Development Toolkit Reference Guide (ARM DDI 0041) for more
information on the Command Line Debugger.

4.8.4 Flash download

The Flash Download dialog is used to write an image to the flash memory chip on an ARM
Development Board or any suitably equipped hardware.

Set Ethernet Address

After writing an appropriate image to the flash memory (for example, Angel with ethernet
support), this option sets the ethernet address (not necessary if you have built your own
Angel with address compiled in). When you click OK, you are prompted for the IP address
and netmask (for example, 193.145.156.78).

Arguments/Image

Specifies the arguments or image to write to flash. Use the Browse button to select the
image.

Note You can build your own flash image using the example in the Target Development System
User Guide (ARM DUI 0061). MDW looks for one of the following images—flash.li and
flash.bi—depending on whether you are using big- or little-endian. It looks first in the
current working directory and then in the Toolkit bin directory.
4-36 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.8.5 Channel viewers

Debug communication channels can be accessed using a Channel Viewer. An example
channel viewer is supplied with MDW (MTHUMBCV.DLL) or you can provide your own viewer.

To use the channel viewer supplied with MDW, semihosting has to be set to 0. This can be
done from the Debugger Internals window (see Debugger Internals on page 4-9).

To select a Channel Viewer:

1 Ensure that Debug Comms Channel semihosting is disabled.
(See semihosting_enabled and semihosting_dcchandler_address on page
4-23.)

2 Select Configure Debugger from the Options menu.

3 Select the Channel Viewer Enabled option. The Add and Delete buttons are
activated.

4 Click the Add button and a list of .DLLs will be displayed.

5 Select the appropriate .DLL and click the Open button.

MTHUMBCV.DLL provides the following viewer:

The window has a dockable dialog bar at the bottom, this is used to send information down
the channel. Typing information in the edit box and clicking the Send button will store the
information in a buffer, the information is then sent when requested by the target. The Left to
send counter displays the number of bytes that are left in the buffer.

Sending information

To send information to the target, type a string into the edit box on the dialog bar and click
the Send button. The information is sent when requested by the target, in ASCII character
codes.

Receiving information

The information received by the Channel Viewer is converted into ASCII character codes
and, if the channel viewers are active, are displayed in the window. If, however,
0xffffffff is received, the following word is treated and displayed as a number.
User Guide
ARM DUI 0048A

4-37

Multi-processor Debugger for Windows (MDW)
4.9 Using MDW with Piccolo

4.9.1 Processor context

When you are using the MDW with the Piccolo coprocessor, you can change the user
interface mode, or context, to reflect the processor on which you are focussing.

For example, if you are in the ARM context, the pulldown menu option View Registers
shows the ARM registers; if you are in the Piccolo context, the same option shows the
Piccolo registers.

Some pulldown menu options and toolbar options are not available for all processors. These
options are grayed when they are unavailable.

The current context is displayed in the context list box on the main toolbar.

If you are using the default setup, you can change the context by:

• selecting from the list box on the main toolbar, or

• selecting the Execution Window, or

• displaying an Execution Window menu

These methods are described below.

Selecting context using the toolbar

The list box on the main menu bar shows the current context.

1 Click the down arrow on the context list box.

2 Select the processor you require from the list.

When you select a processor, the main menu and toolbar options are changed.

context list box
4-38 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
Selecting context by execution window

To select the Execution Window using the View menu:

1 Select Processors from the View menu.

The processor with the current context is check-marked.

2 Select the required processor from the Processors menu.
Note that:
- the processor’s Execution Window has the focus

- the context list box on the toolbar shows the selected processor

- the main menu and toolbar options are changed to reflect the processor

Alternatively, you can change context by selecting the appropriate Execution Window.
User Guide
ARM DUI 0048A

4-39

Multi-processor Debugger for Windows (MDW)
You can use the Configure Debugger option on the Options menu to disable context
change by selecting the Execution Window. For example, you may want to do this if you
switch between the ARM and Piccolo Execution Windows frequently, but you want to remain
in the ARM context all the time. Refer to the screen shot below.

1 Select Configure Debugger from the Options menu.

2 Select the Context tab.

3 Deselect the Automatic processor context switching check box.

4 Select OK.

Selecting context by execution window menu

When you right-click the mouse button to display an Execution Window menu, the context
is automatically changed to match that of the Execution Window:

• the context list box on the toolbar shows the selected processor

• the main menu and toolbar options are changed
4-40 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
Mini toolbars and context

Each processor type has its own mini toolbar. (See 4.10.3 The Piccolo mini toolbar on
page 4-47 for a description of the Piccolo mini toolbar.) To display a mini toolbar for a
particular processor:

1 Select the required processor context.

2 Select Mini toolbar from the View menu.

The option is check-marked, and the mini toolbar is displayed.

To remove the mini toolbar, select the Mini toolbar option again.

By default, the mini toolbar remains on screen until you remove it. You can, however,
configure the MDW so that only the mini toolbar for the current context is displayed:

1 Select Configure Debugger from the Options menu.

2 Select the Context tab.

3 Deselect the Mini toolbars for out of context processors check box.

4 Select OK.

4.9.2 Running an image

When you load an image containing Piccolo code, you can run the code in the usual way.
The program will run until either ARM or Piccolo encounters a stop condition.

4.9.3 Stepping through an image

When you have loaded an image that contains Piccolo code, you can step through code by
using the toolbar buttons, pulldown menu options, or Execution Window menu options in the
usual way. However, the step options available to you are different depending upon the
current context. These are summarized in Table 4-4: Piccolo and ARM step options.

Notes (1) If you use the Execution Window context-sensitive menu for stepping, the context is
automatically changed when you display the menu.

(2) After stepping the ARM, Piccolo may or may not be on an instruction boundary; similarly,
after stepping Piccolo the ARM may or may not be on an instruction boundary. In instances
where any processor is not on an instruction boundary—that is, it is mid-step—it is not
possible to change the contents of any of its registers. A processor can be moved to the next
instruction boundary by selecting the appropriate context and executing a single step.

Processor
context

Step In Step Over Step Out Run to
cursor

ARM ✔ ✔ ✔ ✔

Piccolo ✘ ✔ ✘ ✔

 Table 4-4: Piccolo and ARM step options
User Guide
ARM DUI 0048A

4-41

Multi-processor Debugger for Windows (MDW)
4.9.4 Breakpoints

The Breakpoints Window indicates the type of code in which the selected breakpoint
appears. The debugger assigns a short, unique name to each processor in the target. The
ARM is referred to by ARM7 0, and Piccolo by PICC 0. The screen shot below shows a
Piccolo breakpoint on line 103 of file test.s, with an ARM breakpoint on line 14 of file
main.c

Note In execution windows, breakpoints that are “out of context” appear in brown—for example,
Piccolo breakpoints that are visible in the ARM execution window.

4.9.5 Synchronous stopping with Piccolo

If the Piccolo PC is at a breakpoint, then a step is automatically performed before ‘go’ and
‘Run to Cursor’. This is not noticed during normal usage, but will cause the debugger to stop
other processors executing if synchronous stopping is enabled.

4.9.6 Piccolo connection problems

If MDW is connected to the ARM (only) of an ARM + Piccolo core, and a second MDW
attempts to connect to ARM + Piccolo of that core, then it is possible that both connections
will fail.
4-42 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.10 Working with Piccolo
This section describes the features available when using the Piccolo context.

4.10.1 The Piccolo execution window

The Piccolo Execution Window is displayed automatically if you have connected to Piccolo.

You can also activate the Window manually by selecting from the Processor menu on the
View pulldown menu.

Execution Window menu

The Piccolo Execution Window menu is slightly different from the ARM menu, in that the
Step In, Step Out and Disassembly Mode are not available.

4.10.2 The Piccolo registers windows

To access the Piccolo Registers Windows:

1 Select the Piccolo context.

2 Select Registers from the View menu.

3 Select the register set you require from the Registers menu. You can choose from:
- General Registers

- Reorder Buffer

- Output FIFO

- Special Registers

For example, the Piccolo Registers Window is shown below.

Alternatively, you can select the appropriate button on the Piccolo mini toolbar (see 4.10.3
The Piccolo mini toolbar on page 4-47).
User Guide
ARM DUI 0048A

4-43

Multi-processor Debugger for Windows (MDW)
By default, the Piccolo Registers Windows have background shading to group similar banks
of registers together so that the Window is easier to read. If required, you can disable the
background shading:

1 Select Configure Debugger from the Options menu.

2 Select the Piccolo tab.

3 Deselect the Background colors in windows check box.

4 Select OK.
4-44 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
Registers window menu

The Piccolo Registers Windows menu is similar to the ARM menu, except:

• the Indirect through item option is not available

• the Edit item contents option displays different dialog boxes (see Editing
register contents below)

• the Change line format and Change window format options lead to a submenu
(see Changing register formats on page 4-46).

Editing register contents

When you double-click on a Piccolo register or select the Edit item contents option from
the Registers Window menu, the appropriate Piccolo - Modify Contents dialog is displayed.
For example, the dialog for the Reorder Buffer is shown below.

The displayed dialog may depend on the formatting of the current line. For example, if you
are viewing the register as halfwords, it may be edited as halfwords. Refer to Changing
register formats on page 4-46.

If you have selected a Flag or Status register in the Special Registers Window, the following
dialogs are displayed:

For details about how to use these dialogs, refer to the online Help text.
User Guide
ARM DUI 0048A

4-45

Multi-processor Debugger for Windows (MDW)
Changing register formats

When you select the Change line format or Change window format option from the
Piccolo Registers Window menu, a submenu is displayed, as shown below.

The selected register’s current format and base are respectively denoted by radio buttons.
Select the new word format or base as required. To change both, repeat the procedure.

Half word formatting of 32-bit registers may be allowed when the register is considered in
two 16-bit halves. When a register is displayed in two halves, the Modify Contents dialog
allows independent modification of the two halves. In the case of Piccolo accumulators,
guard bits may also be modified independently if the register is formatted as halfwords. Full
formatting only applies to Piccolo 40-bit accumulators.

Register contents are viewable in hexadecimal, decimal, or fractional form using Q notation.
To view in fractional form, select the Q Notation... option from the submenu (see above),
and enter the number of fractional bits in the dialog box provided.
4-46 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
4.10.3 The Piccolo mini toolbar

The Piccolo mini toolbar provides shortcuts to viewing registers, and to disassembly. To
display the mini toolbar if it is not already present, select Mini toolbar from the View menu
when you are in the Piccolo context.

You can also access these options from the View pulldown menu when you are in the
Piccolo context.

See 4.10.2 The Piccolo registers windows on page 4-43 for a description of the Piccolo
Registers Windows.

General Registers Output
FIFO

Disassembly

Reorder
buffer

Special
registers
User Guide
ARM DUI 0048A

4-47

Multi-processor Debugger for Windows (MDW)
4.11 Command Line Options for MDW
This section lists and describes the command line options available for MDW.

4.11.1 Command line

The basic command line is:

mdw_pathname -switch filename

where:

4.11.2 MDW-specific options

4.11.3 Piccolo-specific options

4.11.4 MDW support option

This option allows you to run multiple instances of MDW so that you can have a debugger
running for each chip.

mdw_pathname specifies the full pathname of the MDW executable

switch is one of the options listed below

filename is the full pathname of the file to use with the switch

-debug image_name loads image_name for debugging

-exec image_name loads and executes image_name

-reset resets the MDW registry to the original default settings

-nologo stops the splash screen being displayed on startup

-nomainbreak stops MDW from trying to set a breakpoint at Main()
when loading an image

-script script_name Obeys the script_name on startup. This is
equivalent to typing the following line as soon as the
debugger starts up:

obey script_name

-noshading turns off shading on the Piccolo register windows

-noautocontext turns off automatic switching between processor
contexts

-nootherminis hides mini toolbars when not in context

-session session_name starts a session with the name session_name
4-48 User Guide
ARM DUI 0048A

Multi-processor Debugger for Windows (MDW)
Using a batch file

To run multiple instances of MDW from a batch file, you need to add the word start to the
beginning of each command line. For example:

start mdw -session debug1
start mdw -session debug2
start mdw -session debug3

This allows each instance of the debugger to run in parallel. If you do not add start to each
line, you must quit from the first debugger before the next listed debug session can start.

Session switches

These can be used to start multiple sessions from within a batch file. For example:

start c:\mdw\mdw.exe -session Smith -debug c:\images\dhry.axf

start c:\mdw\mdw.exe -session Jones -debug c:\images\flash.axf

Quitting from batch files

Under Windows 95, you must use the exit command to quit from the batch file. Under
Windows NT, the batch file quits automatically when it has executed all its commands.

4.11.5 Examples

This example loads and executes the file dhry.axf:

c:\mdw\mdw.exe -exec c:\mdw\examples\dhry\dhry.axf

This example loads the image dhry.axf for debugging:

c:\mdw\mdw.exe -debug c:\mdw\examples\dhry\dhry.axf

This example stops MDW from trying to set a breakpoint at Main() when loading
dhry.axf and does not display the MDW startup banner:

c:\mdw\mdw.exe -nologo -nomainbreak -debug c:\mdw\examples\dhry\dhry.axf

This is equivalent to typing the command obey dccsemi.txt as soon as the debugger
starts up:

c:\mdw\mdw.exe -script c:\mdw\examples\dccsemi.txt
User Guide
ARM DUI 0048A

4-49

Multi-processor Debugger for Windows (MDW)
4-50 User Guide
ARM DUI 0048A

This chapter defines the software interface between a Multi-ICE Server and a debug client
as used by the ARM Multi-ICE DLL for ARM’s debugger. It provides a complete function
reference and programming guidelines for writing client side drivers to interface with
hardware connected to Multi-ICE.

5.1 Introduction 5-2

5.2 Accessing the Multi-ICE Server at the TAPOp Level 5-3
5.3 Using TAPOp Macros 5-11
5.4 TAPOp Calls Listed by Function 5-18

5.5 TAPOp Procedure Call Alphabetic Reference 5-21
5.6 TAPOp Error Codes 5-80

 TAPOp Procedure Calls5
5-1User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.1 Introduction
The TAPOp interface allows ARM processors or third-party devices on an ASIC to be
accessed via a Multi-ICE Server. This allows users to attach applications to any ARM and/or
non-ARM elements on an ASIC. For example:

• DSP debuggers

• cache reader

• communications channel drivers

• test applications

Test Access Port (TAP) controller state transitions

Figure 5-1: Test access port (TAP) controller state transitions shows the TAP controller
state transitions.

 Figure 5-1: Test access port (TAP) controller state transitions

Test-Logic Reset

Run-Test/Idle Select-DR-Scan

Capture-DR

Shift-DR

Exit1-DR

Update-DR

Exit2-DR

Pause-DR

tms=1

tms=0

tms=0

tms=1

tms=0

tms=0

tms=0

tms=0

tms=0

tms=1

tms=1

tms=1

tms=1

tms=0

tms=1
Select-IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Update-IR

Exit2-IR

Pause-IR

tms=0

tms=0

tms=0

tms=0

tms=0

tms=1

tms=1

tms=1

tms=1

tms=0

tms=1 tms=1

tms=1

tms=1 tms=0 tms=1 tms=0
5-2 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.2 Accessing the Multi-ICE Server at the TAPOp Level
A client communicates with a Multi-ICE Server using remote procedure calls (RPCs).
Multi-ICE uses ONC RPC in the TCP mode; this is a TCP/IP connection for making
procedure calls on the Server. Because RPC uses TCP/IP as its transport mechanism, it is
just as easy to connect to a Multi-ICE Server over a network or modem as it is to connect
locally. Sources for the client end of the RPC-based TAPOp interface can be found on the
installation disk.

In overview, a client opens a connection to the required device, makes RPC calls to the
Server which scans data through that device’s scan chains and, when finished, disconnects
and allows another client to connect.

Each RPC call performs one Test Access Port (TAP) operation, hence the name TAPOp
interface. For example, there are TAP operations to write a value to the Instruction Register
(IR) or read a device scan chain. Because of the low level of the interface and the high
overhead of RPC calls, it is possible to batch up multiple RPC calls into macros that are run
by the Server. This is similar to JAVA applets downloaded from a web Server to a client
(browser), because the browser is faster than the link. In Multi-ICE, the client downloads
macros to the Server because the Server is faster than the link. This gives a significant
performance improvement.

5.2.1 Connections

Opening a TCP connection

If a client wishes to communicate with a Server, rpc_initialise must be called to open
a connection to the transport layer (TCP). The Server location is identified by a callback
function GetServerName that the client must supply. This opens a two-way channel
between the client and Server through which procedure calls can be made to the Server.

More than one TCP connection to the Server can be opened at the same time from the same
client. The standard distribution of rpcclient.c opens two TCP connections by default
and this can be used to overlap RPC calls to improve performance (this is done in the ARM
debugger during downloads where multiple threads are used to pipeline RPC calls). When
the client has finished, the TCP connection is closed using rpc_finalise.

Opening a TAPOp connection

After a TCP connection has been made to a Multi-ICE Server, the client must indicate to the
Server which device to use. This is known as opening a TAPOp connection, and at any one
time there is a single connection between the client and a single device on the Server. The
TAPOp connection is identified by a connection ID; this ID is used in all subsequent calls to
the Server. The client should close this connection when finishing a debug session.

At the same time, another TAPOp connection can be present to another device (even on the
same TAP controller) using a different connection ID, but a single device can only be
connected to a single connection ID. For example, if the client opens two TCP connections
to the same device (as in the standard distribution rpcclient.c), calls from the client
using both TCP connections must use the same TAPOp connection ID.
User Guide
ARM DUI 0048A

5-3

TAPOp Procedure Calls
The connection ID is a logical identifier that the Server uses to recognize which client it is
talking to, and it identifies a particular device on a particular TAP controller. It is allocated by
the Server when the client makes a TAPOp_OpenConnection call to the Server.

Closing a TAPOp connection

To close the TAPOp connection, call TAPOp_CloseConnection. All the macros defined by
the client are deleted and storage is freed.

5.2.2 Multiple clients of the TAPOp layer

There may be several simultaneous clients to the TAPOp layer, each one connected to a
different TAP controller. Alternatively, clients can connect to the same TAP controller but only
if they do not share any resources other than:

• the TAP controller IR

• the use of a scan chain select register

Two debuggers that access distinct sets of scan chains can both be clients (for example, a
DSP scan chain hung off an extra scan chain of the ARM TAP controller). However, two
debuggers that access the same scan chain cannot rely on the TAPOp interface to separate
their accesses, particularly in the case of potentially shareable resources such as
EmbeddedICE breakpoint registers. For example, two debuggers that talk to the same
processor must co-operate at a higher level (the Remote Debugger Interface, RDI, is the
most obvious place for an ARM processor).

In order to manage several clients using this interface simultaneously, most of the
operations in this interface implicitly request that the client becomes the sole user of the
Multi-ICE hardware, and also pass in a parameter indicating whether the client is ready to
give up ownership of the Multi-ICE hardware after the operation has completed (this is
known as deselecting the connection). If another client still has ownership of the Multi-ICE
hardware, a call fails and returns an error code, and the operation is not performed. It is then
the client's responsibility to try again.

When a client finally gives up ownership of the Multi-ICE hardware, the implementation of
this interface guarantees that the next time that client successfully asks for ownership, the
TAP controller will be in the same TAP state (for example, Run-Test/Idle) as it was when
ownership was relinquished, and the same instruction will be in that client's TAP IR register.
It also guarantees that the same scan chain will be selected in that TAP controller. In return,
the implementation insists that ownership is relinquished only when the TAP controller is in
either Run-Test/Idle or Select-DR-Scan state. This is only an issue for the AnySequence
operations, because all other operations leave the TAP controller in one of these two states.

The Multi-ICE Server keeps track of the following for each TAPOp connection:

• the last value written to the IR for each TAP controller

• the state the TAP controller was in when ownership is relinquished, so that this
state can be restored when ownership reverts to that client.

• the last scan chain selected using a SCAN_N instruction
5-4 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.2.3 TAP controller identification

The Multi-ICE Server can automatically detect the number of TAP controllers and any details
required for each TAP controller—for example, the length of the IR register. There is also the
option to manually load a configuration file.

All incoming requests are labelled with the connection ID, which can be used to look up the
position of the TAP controller in the scan chain, where 0 is nearest TDI. It is therefore
necessary for a TAPOp client to inform the Server of the TAP controller position and the scan
chains it needs when opening a TAPOp connection.

To get a list of devices for a particular Server, call TAPOp_GetDriverDetails. This
returns a list of device names (for example, ARM7TDMI), their TAP positions (TAP 0 is
nearest TDI) and flags indicating if the devices are connected.

5.2.4 Order of output of TDI/TMS bits passed over tapop.h

TDI, TDO and TMS data is passed over tapop.h as a 40-bit type called ScanData40
constructed from a 32-bit word containing the least significant bits and a byte containing the
most significant bits. This type is defined in tapop.h .

typedef struct ScanData40 {
unsigned32 low32;
unsigned8 high8;

} ScanData40;

The bits are output as follows:

Bit 0 of low32—Bit 31 of low32

Bit 0 of high8—Bit 7 of high8

Similarly, for an output (TDO) block the first TDO bit input is placed in Bit 0 of low32, and the
last in Bit 7 of high8.

If a data field is specified as reversed then the same data will be presented to (or read from
for TDO) the Multi-ICE Reversed Data register, which will result in it being bit-reversed.

When scanning less than 40 bits, the data must be left justified so that, after bit-reversal, the
data is at the correct end of the register.

31 0

high8 low32

7 0
User Guide
ARM DUI 0048A

5-5

TAPOp Procedure Calls
5.2.5 Accessing long scan chains/using mask and offset parameters

AccessDR_W calls contain WRoffset and WRmask parameters. In addition AccessDR_RW
calls contain an RDoffset parameter. The purpose of these parameters is to reduce the
amount of bits that get written to less than 40 bits using WRmask, or increase the amount of
bits that can be read/written to more than 40 bits by supplying a read/write offset (RDoffset
and WRoffset parameters). For example, to access a 50-bit scan chain use the following
steps:

1 Access 40 bits using WRmask = all ones. Since the parameter is a pointer to an
array of bits, a special mechanism is built in for all ’1’ masks. If using a non-macro
call, use NULL for all ones. For macroized calls, all the bits must be provided in two
parameters (see macrostruct.h for details).

2 Access the remaining 10 bits using a 10-bit WRmask and a 40-bit offset.

5.2.6 Efficiency considerations

The TAPOp layer is similar to the functional interface used by EmbeddedICE. In a Multi-ICE
system, however, the function is executed across an RPC layer to a PC that may be remote.
As a result, when a large number of calls are made across this interface, there is a reduction
in performance. In order to provide a way around this, you can use TAPOp macros to batch
up TAPOp operations and make a single RPC call perform multiple TAPOp operations.

In general, there are limits to the number of TAPOp operations that can be grouped together
because of the nature of the operation being performed. If TDO data causes a decision to
be made in the TAPOp client, any macro must be finished before the next operation can be
decided upon.

Large continuous data transfers prevent other TAPOp clients accessing the Server. It is
recommended that data size should be limited to chunks of 10kB when communicating over
a network to the Server.

5.2.7 Error detection and automatic connection de-selection

Whenever a TAPOp call is made, if a TAPOp_Error is returned which is not
TAPOp_NoError or TAPOp_UnableToSelect, that error is considered fatal. This means
that the TAPOp client may not be able to recover its session without losing data or at least
aborting the operation.

Because the TAPOp interface can be used by several client debuggers at once, the
connection that has an error is automatically deselected; this ensures that one TAPOp client
receiving a fatal error does not block out others.

When a TAPOp call is made, it is likely that network traffic is present. To allow calls to be
reliably passed over a network connection, a TAPCheck macro has been provided. This
macro waits until the network is available before making a function call. This is defined in
macros.h.
5-6 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
The TAP_Check macro should be used around all TAPOp and ARMTAP calls. It makes the
call and performs error checking on the return value as follows:

1 If the call returns TAPOp_NoError then it does nothing.

2 If the call returns TAPOp_UnableToSelect, it will retry the same call.

3 If the call returns anything else, a call to GetMICEflags will be made in an attempt
to diagnose the failure. If the flags indicate that the target power is off or has been
off or the target has been reset then the returned error from the called procedure
is overwritten with a more appropriate code.

You must define the following function to allow a fatal error to be dealt with cleanly.
This function may be empty.

give_up(void)

Sample usage of TAPCheck can be seen in Example 2 on page 5-15.

5.2.8 TAPSHARE.H header file

The following functions can be used to read and write data which is held by the Server on
behalf of the various TAPOp clients attached to it, allowing these applications to
communicate with each other in a limited manner.

There are two sets of data:

1 Data which is private to each TAP controller (processor).
There are flags held for each processor; some are read by the debugger and some
are written. The TAPOp module manages how these are passed on to other TAPs’
(processor’s) read flags in a way set up by the Multi-ICE Server.

Note: Use of these flags is optional for a TAPOp client, but if they are used, they
provide a way to start and stop processors almost synchronously when several
applications are involved.

2 Common data.
The Server does nothing with this data; it just maintains the data so the TAPOp
clients can use it to communicate between themselves in the manner defined. The
size of this data is arbitrary, and is currently four words (16 bytes).

Unlike most of the TAPOp operations, it is not necessary for a TAPOp client to have a
selected connection in order to use the Private Data functions, because they do not affect
the TAP controller in any way. However, to allow atomic Read-Modify-Write of the common
data, the connection does have to be selected for accesses to the common data, so a
deselect parameter is available.
User Guide
ARM DUI 0048A

5-7

TAPOp Procedure Calls
Private flags

TAPOp_ProcRunning

A TAPOp client should set this flag when the processor starts executing code. It should be
cleared when the processor halts. This can be used by the Multi-ICE Server to indicate
whether or not other processors should be stopped according to the Multi-ICE user’s
requirements. Setting this bit causes the processor state display to change to [R]. This is a
write-only flag for the TAPOp client.

TAPOp_ProcHasStopped
TAPOp_ProcStoppedByServer

These two flags are used to determine if and why a processor has stopped. A client should
poll the TAPOp_ProcHasStopped flag when the processor is running. If it set, the
TAPOp_ProcStoppedByServer flag will indicate why. If it is set, the Multi-ICE Server has
stopped the processor because some other processor has stopped and a synchronized stop
condition was set up. If TAPOp_ProcStoppedByServer is not set, the processor has
stopped of its own accord—for example, because it hit a breakpoint. These flags are
read-only for a client.

TAPOp_DownloadingCode

A debugger should set this flag immediately before starting to download code to the target
processor. This allows a user output bit to be set when this occurs, which is potentially useful
on a system that can switch between very slow and very fast clocks, as fast clocking will
speed up download considerably. Similarly, when the download has completed, this bit
should be cleared. Setting this bit causes the processor state display to change to [D] If set
on download has been selected for user output bit1, setting this bit will also set the user
output bit1.This flag is read-only for the Server.

TAPOp_ProcStartREQ
TAPOp_ProcStartACK

These two flags control synchronized starting of processors. If
TAPOp_UserWantsSyncStart is set, the debugger should set TAPOp_ProcStartREQ to
request the Server to start the processor. When all the debuggers have set their
TAPOp_ProcStartREQ flags, the Server will start all processors together, and set the
TAPOp_ProcStartACK flag. TAPOp_ProcStartREQ is read-only for the Server.
TAPOp_ProcStartACK is read-only for a client.

TAPOp_UserWantsSyncStart
TAPOp_UserWantsSyncStop

These two flags are read-only, and will be set by the Server if the user has selected sync
start and/or stop from the dialog. These flags are read-only for a client.
5-8 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.2.9 Flags returned by ReadMICEFlags

5.2.10 Building a driver

The files required to build such applications are optionally copied to the following directory
during installation of the Multi-ICE software:

C:\Multi-ICE\source

The pre-processor definitions WIN32 and MULTI_ICE need to be made.

The source files needed are:

mice_clnt.c

mice_xdr.c

oncrpc.lib

rpcclient.c

nonrpcclient.c

In addition, there are a number of header files required, which are copied into the same area
as source files. These header files are listed in the Multi-ICE Installation Guide (ARM
DSI0005).

TAPOp_FL_TargetPowerOffNow The target’s power is off.
This is an error condition.

TAPOp_FL_TargetPowerHasBeenOff The target’s power has been off since the last
TAPOp_OpenConnection call was made.
This is also an error condition; turning the
target on and off in the middle of a work
session is likely to cause problems.

TAPOp_FL_InResetNow The target is currently in Reset; the target’s
reset signal is currently set.
This is generally an error condition.

TAPOp_FL_TargetHasBeenReset The target has been reset since the last
TAPOp_OpenConnection call was made.
This is generally an error condition.

TAPOp_FL_UserIn1 The state of the user-defined input signal 1
from Multi-ICE.

TAPOp_FL_UserIn2 The state of the user-defined input signal 2
from Multi-ICE.

TAPOp_FL_UserOut1 Current state of user-defined output 1 from
Multi-ICE

TAPOp_FL_UserOut2 Current state of user-defined output 2 from
Multi-ICE
User Guide
ARM DUI 0048A

5-9

TAPOp Procedure Calls
Compiler differences

The source files supplied are for use with Microsoft Visual C++. If an alternative compiler is
used, the definitions in basetype.h must be changed. It is imperative that unsigned8,
unsigned16 etc. are exactly 8, 16 bits in size.
5-10 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.3 Using TAPOp Macros
This section describes how to write and run TAPOp macros. The following list gives a
functional summary of the macro procedure calls.

Creating macros TAPOp_DefineMacro

Destroying macros TAPOp_DeleteMacro
TAPOp_DeleteAllMacros

Displaying macros (for debug) TAPOp_DisplayMacro

Running macros TAPOp_RunMacro
TAPOp_RunBufferedMacro
TAPOp_FillMacroBuffer

Synchronized stop / start macros TAPOp_SetControlMacros

The macro procedure calls are given in full in the alphabetical listing of all procedure calls in
5.5 TAPOp Procedure Call Alphabetic Reference.

5.3.1 Writing a macro

The first step in writing a macro is to decide how instructions should be grouped together to
optimize the speed of transfer. Better performance results from macros containing a large
number of operations.

The second step is to ‘convert’ the parameters of the normal TAPOp operations to the macro
versions. The structure for the data required for the macro versions of the instructions can
be found in the header file macstruct.h.

In general, it is a good policy to get the non-macro version of a client working before
attempting to turn it into a macro, as it is harder to debug once in macro format.

As an example, the prototype for the non-macro ARMTAP_AccessDR_W operation is:

extern TAPOp_Error ARMTAP_AccessDR_W(
unsigned8 connectId,
ScanData40 *TDIbits,
unsigned8 TDIrev,
unsigned8 len,
unsigned8 WRoffset,
ScanData40 *WRmask,
unsigned8 nclks,
unsigned8 deselect

);

For the ARMTAP_AccessDR_W instruction above, the macro version requires the
parameters shown on the next page. The differences to note are:

1 The connectId is not present, this parameter is passed to the TAPOp_RunMacro
function.

2 The deselect parameter is not present, this parameter is passed to the
TAPOp_RunMacro function.
User Guide
ARM DUI 0048A

5-11

TAPOp Procedure Calls
3 TDIbits and WRmask are passed as two parameters rather than as one
ScanData40 type

typedef struct MAC_ARMTAP_AccessDR_WIn {
unsigned32 TDIbits1;
unsigned8 TDIbits2;
unsigned8 TDIrev;
unsigned8 len;
unsigned8 WRoffset;
unsigned32 WRmask1;
unsigned8 WRmask2;
unsigned8 nclks;

} MAC_ARMTAP_AccessDR_WIn;

Next decide which parameters are fixed (define time) and which are variable (runtime). This
depends on the specific programming task. During the implementation of the macro
definition, the fixed parameters are easily recognized.

The process of defining and using macros is illustrated in the following examples using the
ARMTAP_AccessDR_W instruction; other instructions are used in macros in a similar
manner.

As with all TAPOp and ARMTAP instructions, the macro operations must be performed
within the TAPCheck macro to ensure that appropriate error checking is performed. This is
shown in the following examples.

5.3.2 Passing fixed and variable parameters to TAPOp macros

To simplify the passing of both fixed and variable parameters to TAPOp macros, a set of
predefined C macros is provided in macros.h.

The macros that enter parameters use the following variables, which must be defined:

int ValPtr;

unsigned8 Values[MACRO_ARGUMENT_AREA_SIZE];

The value of MACRO_ARGUMENT_AREA_SIZE is defined in macros.h.

C macros for passing fixed and variable parameters

The following macros return IErr_NotEnoughMacroArgumentSpace if:

ValPtr > MACRO_ARGUMENT_AREA_SIZE

InitParams

Resets ValPtr, required before the first fixed parameter of each macro ‘line’ at
define-time, and before the first variable parameter at runtime.

EnterParamBytes(void *byte_ptr, int nbytes)

Enters a number of bytes into the Values array.
5-12 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
EnterParamU8(unsigned8 byte)

Enters a single byte into the Values array.
EnterParamU16(unsigned16 halfword)

Enters a 16-bit halfword as two bytes into the Values array.

EnterParamU32(unsigned32 word)

Enters a 32-bit word as 4 bytes into the Values array.

The following macros do not return (NR) an error if:

ValPtr > MACRO_ARGUMENT_AREA_SIZE

but an error message is displayed and the array boundary is protected. This uses
fprintf(stderr, “...”); .

NREnterParamBytes(void *byte_ptr, int nbytes)

Enters a number of bytes into the Values array.

NREnterParamU8(unsigned8 byte)

Enters a single byte into the Values array.
NREnterParamU16(unsigned16 halfword)

Enters a 16-bit halfword as two bytes into the Values array.
NREnterParamU32(unsigned32 word)

Enters a 32-bit word as 4 bytes into the Values array.
User Guide
ARM DUI 0048A

5-13

TAPOp Procedure Calls
5.3.3 Example 1

Example1 sends an LDMIA op-code to an ARM using ARMTAP_AccessDR_W. A
connectId has previously been obtained with a TAPOp_OpenConnection. The
instruction can be sent to the Data Register using the non-macro method:

ScanData40 opcode = { 0xE89E3FFF, 0}; /* op-code for LDMIA instr */
ScanData40 WRmask = { 0xFFFFFFFF, 0x1}; /* Write mask */
unsigned8 TDIrev = 1, len = 32, nclks = 1, deselect = 1;
TAPCheck (ARMTAP_AccessDR_W (connectId, &opcode, TDIrev, len, 0, &WRmask,

nclks, deselect));

To define the macro

To illustrate a simple macro, a macro ‘line’ of the above instruction is entered with all
parameters fixed. Before you can use the TAPOp_DefineMacro instruction, the fixed
parameters (see MAC_ARMTAP_AccessDR_WIn) must be put into an array, with attention to
the type of the parameter.

#define MACRO1 1
#define LDMIA (unsigned32) 0xE89E3FFF

/* op-code for LDMIA instruction */
#define SC_DATABUS 33 /* length of the scan chain */

int ValPtr;
unsigned8 Values[MACRO_ARGUMENT_AREA_SIZE];

/* const def in macros.h */

/*All parameters are fixed.*/
InitParams; /* Reset ValPtr */
NREnterParamU32(LDMIA); /* Place param1 (TDIbits1) in Values array */
NREnterParamU8(0); /* Place param2 (TDIbits2) in Values array */
NREnterParamU8(1); /* Place param3 (TDIrev) in Values array */
NREnterParamU8(SC_DATABUS);/* Place param4 (len) in Values array */
NREnterParamU8(0); /* Place param5 (WRoffset) in Values array */
NREnterParamU32(0); /* Place param6 (WRmask1) in Values array */
NREnterParamU8(0); /* Place param7 (WRmask2) in Values array */
NREnterParamU8(1); /* Place param8 (nclks) in Values array */

/* ‘line’ can now be added */

TAPCheck(TAPOp_DefineMacro(connectId, MACRO1,"ARMTAP_AccessDR_W:12345678",
1, Values, ValPtr));

where 12345678 means that parameters 1 to 8 are fixed.

To run the macro

int lnerr,lperr, /* Variables for error position detecting */
resultvalues, /* In this example, no data is returned, but */
resultsize = 0; /* variables need to be defined for correct operation */

InitParams; /* Reset ValPtr */

TAPCheck(TAPOp_RunMacro(connectId, MACRO1, Values, ValPtr, &lnerr,
&lperr, &resultvalues, &resultsize, 1, 1));
5-14 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
Since all the parameters are fixed, there is no need to load any parameters for the
RunMacro. It is still necessary, however, to use InitParams to indicate this.

5.3.4 Example 2

To demonstrate sending one of the parameters at runtime, a macro line is entered to accept
the least-significant 32 TDIbits at runtime for three instructions. The purpose of this macro
is to send the following instructions to the Data Register. The following are entered at
runtime:

• LDMIA instruction

• two NOPs

To define the macro
#define MACRO2 2
#define LDMIA (unsigned32) 0xE89E3FFF/* op-code for LDMIA instr */
#define SC_DATBUS (unsigned8) 33
int ValPtr;
unsigned8 Values[MACRO_ARGUMENT_AREA_SIZE];

/* Send 1 data word out.*/
/*Parameters 2 to 5 are fixed, parameter 1 sent at run-time */
InitParams; /* Reset ValPtr */
NREnterParamU8(0); /* Place param2 (TDIbits2) in Values array */
NREnterParamU8(1); /* Place param3 (TDIrev) in Values array */
NREnterParamU8(SC_DATABUS);/* Place param4 (len) in Values array */
NREnterParamU8(0); /* Place param5 (WRoffset) in Values array */
NREnterParamU32(0); /* Place param6 (WRmask1) in Values array */
NREnterParamU8(0); /* Place param7 (WRmask2) in Values array */
NREnterParamU8(1); /* Place param8 (nclks) in Values array */

/* ‘line’ can now be added */

TAPCheck(TAPOp_DefineMacro(connectId, MACRO2,
"ARMTAP_AccessDR_W:2345678", 3,Values, ValPtr));

To run the macro
int lnerr,lperr, /* Variables for error position detecting */

resultvalues, /* In this example, no data is returned, but */
resultsize = 0;/* variables need to be defined for correct operation */

InitParams; /* Reset ValPtr */
NREnterParamU32(LDMIA);/* Place param1 (TDIbits1) for first iteration */
NREnterParamU32(NOP);/* Place param1 (TDIbits1) for second iteration */
NREnterParamU32(NOP);/* Place param1 (TDIbits1) for third iteration */

TAPCheck(TAPOp_RunMacro(connectId, MACRO2, Values, ValPtr, &lnerr,
&resultvalues, &resultsize, 1, 1));
User Guide
ARM DUI 0048A

5-15

TAPOp Procedure Calls
5.3.5 Example 3

The following example shows how three ‘lines’ are added to a macro. It uses a combination
of fixed and variable parameters and also uses multiple iterations of the instruction in a
single line. This macro sends the following instructions and data to the Data Register.

The following are all entered at runtime:

• LDMIA instruction

• two NOPs

• 14 x 32-bit data words

• two NOPs

• STMIA instruction

The following is fixed at define time:

• NOP with breakpoint bit set

To define the macro
#define MACRO3 3 /* macro number 3 */
#define NOP (unsigned32) 0xE1A00000 /* A no-op for ARM7TDMI */
#define SC_DATBUS (unsigned8) 33

int ValPtr;
unsigned8 Values[MACRO_ARGUMENT_AREA_SIZE];

void define_send14_macro(void)
{
/* Parameters 2 to 8 are fixed, parameter 1 sent at run-time. */

InitParams;/* Reset ValPtr */
NREnterParamU8(0); /* Place param2 (TDIbits2) in Values array */
NREnterParamU8(1); /* Place param3 (TDIrev) in Values array */
NREnterParamU8(SC_DATABUS); /* Place param4 (len) in Values array */
NREnterParamU8(0); /* Place param5 (WRoffset) in Values array */
NREnterParamU32(0); /* Place param6 (WRmask1) in Values array */
NREnterParamU8(0); /* Place param7 (WRmask2) in Values array */
NREnterParamU8(1); /* Place param8 (nclks) in Values array */

/* ‘line’ 1 can now be added - but it will be entered 19 times */
TAPCheck(TAPOp_DefineMacro(connectId,MACRO3,

"ARMTAP_AccessDR_W:2345678",19, Values,
 ValPtr));

/* send a NOP with the breakpoint (b32) bit set.*/
/* All 8 parameters are fixed.*/

InitParams; /* Reset ValPtr */
NREnterParamU32(NOP); /* Place param1 (TDIbits1) in Values array */
NREnterParamU8(1); /* Place param2 (TDIbits2) in Values array */
NREnterParamU8(1); /* Place param3 (TDIrev) in Values array */
NREnterParamU8(SC_DATABUS); /* Place param4 (len) in Values array */
NREnterParamU8(0); /* Place param5 (WRoffset) in Values array */
NREnterParamU32(0); /* Place param6 (WRmask1) in Values array */
NREnterParamU8(0); /* Place param7 (WRmask2) in Values array */
NREnterParamU8(1); /* Place param8 (nclks) in Values array */
5-16 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
/* ‘line’ 2 can now be added */
TAPCheck(TAPOp_DefineMacro(connectId,MACRO3,

"ARMTAP_AccessDR_W:12345678",1,Values,
ValPtr));

/* Send 1 data word out.*/
/*Parameters 2 to 8 are fixed, parameter 1 sent at run-time */

InitParams; /* Reset ValPtr */
NREnterParamU8(0); /* Place param2 (TDIbits2) in Values array */
NREnterParamU8(1); /* Place param3 (TDIrev) in Values array */
NREnterParamU8(SC_DATABUS); /* Place param4 (len) in Values array */
NREnterParamU8(0); /* Place param5 (WRoffset) in Values array */
NREnterParamU32(0); /* Place param6 (WRmask1) in Values array */
NREnterParamU8(0); /* Place param7 (WRmask2) in Values array */
NREnterParamU8(1); /* Place param8 (nclks) in Values array */

/* ‘line’ 3 can now be added */
TAPCheck(TAPOp_DefineMacro(connectId,MACRO3,

"ARMTAP_AccessDR_W:2345678",1,Values,
ValPtr));

/* check that macro has been entered OK */
TAPCheck(TAPOp_DisplayMacro(connectId, MACRO3));

}

To run the macro
#define LDMIA (unsigned32) 0xE89E3FFF
#define STMIA (unsigned32) 0xE8AE3FFF
#define NOP (unsigned32) 0xE1A00000

TAPOp_Error run_send14_macro(unsigned32 *data, int *lnerr, int *lperr)
{

intj, /* loop counter */
lnerr, lperr, /* Variables for error position detecting*/
resultvalues, /* In this example, no data is returned, but*/
resultsize = 0; /* variables need to be defined for correct operation */

InitParams; /* reset ValPtr */
/* Send parameters for ‘line’ 1, 19 unsigned32 words required */

NREnterParamU32(LDMIA); /* 1 */
NREnterParamU32(NOP); /* 2 */
NREnterParamU32(NOP); /* 3 */
for (j=0;j<14;j++) {

NREnterParamU32(data[j]);/* 4 to 17 */
}

NREnterParamU32(NOP); /* 18 */
NREnterParamU32(NOP); /* 19 */

/* ‘line’ 2 is now ‘skipped’ as it requires no further parameters */
/* Send parameter for ‘line’ 3, 1 unsigned32 word required */

NREnterParamU32(STMIA);

TAPCheck(TAPOp_RunMacro(connectId, MACRO3, Values, ValPtr, lnerr, lperr,
&resultvalues,&resultsize, 1, 1));

return t_err;
}

User Guide
ARM DUI 0048A

5-17

TAPOp Procedure Calls
5.4 TAPOp Calls Listed by Function
This section lists TAPOp calls according to their general function. The categories are:

• TAP controller/scan chain access procedures

• Macro usage procedures

• Connection control procedures

• User I/O procedures

• Data read/write procedures

• Debugging procedures

Each procedure is listed in TAPOp Procedure Call Alphabetic Reference on page 5-21.

5.4.1 TAP controller/scan chain access

5.4.2 Data read/write

Type of TAP operation Generic TAP operations
(use Run-Test/Idle as idle)

ARM-specific operations
(use Select-DR-Scan as idle)

IR access (write only) TAPOp_AccessIR ARMTAP_AccessIR
ARMTAP_AccessIR_1Clk

DR (scan chain) write TAPOp_AccessDR_W ARMTAP_AccessDR_W
ARMTAP_AccessDR_NoClk_W
ARMTAP_AccessDR_1Clk_W

DR (scan chain) read/write TAPOp_AccessDR_RW ARMTAP_AccessDR_RW
ARMTAP_AccessDR_RW_And_Test

TAP controller manual control TAPOp_AnySequence_W
TAPOp_AnySequence_RW

ARM clock control ARMTAP_ClockARM

 Table 5-1: TAP controller/scan chain access

Data type Function

Private data TAPOp_ReadPrivateFlags
TAPOp_WritePrivateFlags

Common data TAPOp_ReadCommonData
TAPOp_WriteCommonData

 Table 5-2: Data read/write
5-18 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.4.3 Connection control

5.4.4 Debugging

5.4.5 Macro usage

RPC connection control TAPOp connection control

Opening Connections rpc_initialise
GetServerName

TAPOp_OpenConnection
TAPOp_GetDriverDetails

Closing Connections rpc_finalise TAPOp_CloseConnection

Connection Heartbeat TAPOp_PingServer

 Table 5-3: Connection control

Debug facility Function

Displaying macros TAPOp_DisplayMacro

RPC logging TAPOp_SetLogging

 Table 5-4: Debugging

Normal macro usage Advanced macro usage

Creating macros TAPOp_DefineMacro

Destroying macros 1

1. TAPOp_CloseConnection calls TAPOp_DeleteAllMacros automatically.

TAPOp_DeleteMacro

TAPOp_DeleteAllMacros

Displaying macros (for debug) TAPOp_DisplayMacro

Running macros TAPOp_RunMacro TAPOp_RunBufferedMacro
TAPOp_FillMacroBuffer

Synchronized stop/start macros TAPOp_SetControlMacros

 Table 5-5: Macro usage
User Guide
ARM DUI 0048A

5-19

TAPOp Procedure Calls
5.4.6 User I/O

Signal Function

Output bits: TAPOp_WriteMICEUser1
TAPOp_WriteMICEUser2

System reset: TAPOp_SetSysResetSignal

 Table 5-6: User I/O
5-20 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5 TAPOp Procedure Call Alphabetic Reference
This section lists all available TAPOp procedure calls. Each argument is shown on a new
line for clarity, and the bold text describes the type of data required for each argument. The
prototypes for these procedure calls are held in the file named at the top of each procedure
call listing—for example, (armtapop.h).

The TAPOp procedure calls described are:

ARMTAP_AccessDR_1Clk_W on page 5-23.

ARMTAP_AccessDR_NoClk_W on page 5-25.
ARMTAP_AccessDR_RW on page 5-27.
ARMTAP_AccessDR_RW_And_Test on page 5-29.

ARMTAP_AccessDR_W on page 5-32.
ARMTAP_AccessIR on page 5-34.
ARMTAP_AccessIR_1Clk on page 5-35.

ARMTAP_ClockARM on page 5-36.
GetServerName on page 5-37.
rpc_finalise on page 5-38.

rpc_initialise on page 5-39.
TAPOp_AccessDR_RW on page 5-40.
TAPOp_AccessDR_W on page 5-42.

TAPOp_AccessIR on page 5-44.
TAPOp_AnySequence_RW on page 5-45.
TAPOp_AnySequence_W on page 5-47.

TAPOp_CloseConnection on page 5-49.
TAPOp_DefineMacro on page 5-50.
TAPOp_DeleteAllMacros on page 5-52.

TAPOp_DeleteMacro on page 5-53.
TAPOp_DisplayMacro on page 5-54.
TAPOp_FillMacroBuffer on page 5-55.

TAPOp_GetDriverDetails on page 5-56.
TAPOp_LogString on page 5-57.
TAPOp_OpenConnection on page 5-58.

TAPOp_PingServer on page 5-60.
TAPOp_ReadCommonData on page 5-61.
TAPOp_ReadMICEFlags on page 5-62.

TAPOp_ReadPrivateFlags on page 5-64.
TAPOp_RunBufferedMacro on page 5-66.
TAPOp_RunMacro on page 5-68.

TAPOp_SetControlMacros on page 5-70.
User Guide
ARM DUI 0048A

5-21

TAPOp Procedure Calls
TAPOp_SetLogging on page 5-73.

TAPOp_SetSysResetSignal on page 5-74.
TAPOp_WriteCommonData on page 5-75.
TAPOp_WriteMICEUser1 on page 5-76.

TAPOp_WriteMICEUser2 on page 5-77.
TAPOp_WritePrivateFlags on page 5-78.
5-22 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.1 ARMTAP_AccessDR_1Clk_W

Writes data to a TAP data register (scan chain) and performs one DCLK. Data coming out
of TDO is discarded.

(armtapop.h)

extern TAPOp_Error ARMTAP_AccessDR_1Clk_W(
unsigned8 connectId,
ScanData40 *TDIbits,
unsigned8 TDIrev,
unsigned8 len,
unsigned8 WRoffset,
ScanData40 *WRmask,
unsigned8 deselect

);

Arguments

Returns

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

TDIbits TDI data read is from here. This must not be NULL.

TDIrev If 0, you present TDI via the Multi-ICE Data Register; otherwise,
present TDI via the Reversed Data Register.

len Length of the selected data register (scan chain).

WRoffset Offset of the selected data register (scan chain) where you start
writing data. The rest of the scan chain is recirculated (whatever
comes out of the TDO pin is put back into TDI during the scan).
To write less than 40 bits, use WRmask.

WRmask A 40-bit mask that determines which bits are written to the data
register (scan chain) during a scan.

1 Bit is written.

0 Bit is recirculated, so that whatever comes out
of the TDO pin is put back into TDI during the
scan.

To write all 40 bits, WRmask can be set to NULL.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections).
Otherwise the connection is deselected, giving other connections
a chance to perform operations.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made. You should try
again later.
User Guide
ARM DUI 0048A

5-23

TAPOp Procedure Calls
Notes

1 If a connection to this TAP controller has been selected already, this operation
happens automatically. If not, this call tries to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

2 The TAP Controller must be in Select-DR state before the function is used, and is
left in this state after the function has been performed.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState The TAP controller is not in Select-DR-Scan.

9 TAPOp_BadParameter Failed because of one of the following:

TDIbits = NULL
len = 0
Wroffset >= len

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
5-24 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.2 ARMTAP_AccessDR_NoClk_W

Writes data to a TAP data register (scan chain). No DCLKs are performed (in other words,
does not go through Run-Test/Idle). Data coming out of TDO is discarded.

(armtapop.h)

extern TAPOp_Error ARMTAP_AccessDR_NoClk_W(
unsigned8 connectId,
ScanData40 *TDIbits,
unsigned8 TDIrev,
unsigned8 len,
unsigned8 WRoffset,
ScanData40 *WRmask,
unsigned8 deselect

);

Arguments

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

TDIbits TDI data read is from here. This must not be NULL.

TDIrev If 0, you present TDI via the Multi-ICE Data Register;
otherwise, present TDI via the Reversed Data Register.

len Length of the selected data register (scan chain).

WRoffset Offset of the selected data register (scan chain) where you
start writing data. The rest of the scan chain is recirculated
(whatever comes out of the TDO pin is put back into TDI during
the scan). To write less than 40 bits, use WRmask.

WRmask A 40-bit mask that determines which bits are written to the data
register (scan chain) during a scan.

1 Bit is written.

0 Bit is recirculated, so that whatever comes
out of the TDO pin is put back into TDI
during the scan.

To write all 40 bits, WRmask can be set to NULL.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections).
Otherwise, the connection is deselected, giving other
connections a chance to perform operations.
User Guide
ARM DUI 0048A

5-25

TAPOp Procedure Calls
Returns

Notes

1 If a connection to this TAP controller has been selected already, this operation
happens automatically. If not, this call tries to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

2 The TAP Controller must be in Select-DR state before the function is used, and is
left in this state after the function has been performed.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState The TAP controller is not in Select-DR-Scan

9 TAPOp_BadParameter Failed because of one of the following:

TDIbits = NULL
len = 0
Wroffset >= len

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
5-26 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.3 ARMTAP_AccessDR_RW

Reads and writes data from a TAP data register. The TAP does not go through Run-Test/Idle
if nclks=0, otherwise it does, and (nclks-1) transitions from Run-Test/Idle are made to
itself before returning to Select-DR-Scan; this has the effect of producing nclks DCLKs.

(armtapop.h)

extern TAPOp_Error ARMTAP_AccessDR_RW(
unsigned8 connectId,
ScanData40 *TDIbits,
unsigned8 TDIrev,
ScanData40 *TDObits,
unsigned8 TDOrev,
unsigned8 len,
unsigned8 WRoffset,
ScanData40 *WRmask,
unsigned8 RDoffset,
unsigned8 nclks,
unsigned8 deselect

);

Arguments

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

TDIbits TDI data is read from here. This must not be NULL.

TDIrev If 0, you present TDI via the Multi-ICE Data Register;
otherwise, present TDI via the Reversed Data Register.

TDOrev If 0, you read TDO via the Multi-ICE Data Register; otherwise,
read TDO via the Reversed Data Register.

len Length of the selected data register (scan chain).

WRoffset Offset of the selected data register (scan chain) where you
start writing data. The rest of the scan chain is recirculated
(whatever comes out of the TDO pin is put back into TDI during
the scan). To write less than 40 bits, use WRmask.

WRmask A 40-bit mask that determines which bits are written to the data
register (scan chain) during a scan.

1 Bit is written.

0 Bit is recirculated, so that whatever comes
out of the TDO pin is put back into TDI
during the scan.

To write all 40 bits, WRmask can be set to NULL.

RDoffset Offset of the selected data register (scan chain) to start
reading data from.
User Guide
ARM DUI 0048A

5-27

TAPOp Procedure Calls
Returns

Notes

1 The TAP Controller must be in Select-DR state before the function is used, and is
left in this state after the function has been performed.

2 If a connection to this TAP controller has been selected already, this operation
happens automatically. If not, this call tries to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

nclks Number of ARM DClks which are to be produced. This is the
number of transitions out of Run-Test/Idle which are made.
If 0, Run-Test/Idle is avoided altogether.
Note: 0 <= n < 32

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections).
Otherwise, the connection is deselected, giving other
connections a chance to perform operations.

Output TDObits TDO data is put here. This must not be NULL.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState The TAP controller is not in
Select-DR-Scan

9 TAPOp_BadParameter Failed because of one of the following:

TDIbits = NULL
len = 0
Wroffset >= len

19 TAPOp_RPC_ConnectionFail The RPC connection died while
processing this request.
5-28 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.4 ARMTAP_AccessDR_RW_And_Test

Writes and reads data from a TAP data register (scan chain). TDO is marked with maskBits
and compared with resBits. If a match is found, TAPOp_NoError is returned, but if no
match is found, the write and read is performed nTries times before returning
TAPOp_MaskAndTestFailed.The TAP does not go through Run-Test/Idle, so if an ARM
Data Bus is selected, no DCLK happens.

(armtapop.h)

extern TAPOp_Error ARMTAP_AccessDR_RW_And_Test(
unsigned8 connectId,
ScanData40 *TDIbits,
unsigned8 TDIrev,
unsigned8 TDOrev,
unsigned8 len,
ScanData40 *maskBits,
ScanData40 *resBits,
unsigned8 WRoffset,
ScanData40 *WRmask,
unsigned8 RDoffset,
unsigned32 nTries,
unsigned8 deselect

);

Arguments

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

TDIbits TDI data is read from here. This must not be NULL.

TDIrev If 0, you present TDI via the Multi-ICE Data Register;
otherwise, present TDI via the Reversed Data Register.

TDOrev If 0, you read TDO via the Multi-ICE Data Register; otherwise,
read TDO via the Reversed Data Register.

len Length of the selected data register (scan chain).

maskBits Mask bits used to test TDO.

resBits Result bits used to test TDO.

WRoffset Offset of the selected data register (scan chain) where you
start writing data. The rest of the scan chain is recirculated
(whatever comes out of the TDO pin is put back into TDI during
the scan). To write less than 40 bits, use WRmask.
User Guide
ARM DUI 0048A

5-29

TAPOp Procedure Calls
Returns

WRmask A 40-bit mask that determines which bits are written to the data
register (scan chain) during a scan.

1 Bit is written.

0 Bit is recirculated, so that whatever comes
out of the TDO pin is put back into TDI
during the scan.

To write all 40 bits, WRmask can be set to NULL.

RDoffset Offset of the selected data register (scan chain) where you
start reading data.

nTries Number of unsuccessful attempts before returning an error.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections).
Otherwise, the connection is deselected, giving other
connections a chance to perform operations.

0 TAPOp_NoError No error

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState The TAP controller is not in Select-DR-Scan.

9 TAPOp_BadParameter Failed because of one of the following:

TDIbits = NULL
maskBits = NULL
resBits = NULL
nTries = 0
len = 0
WRoffset >= len
RDoffset >= len

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.

25 TAPOp_MaskAndTestFailed After nTries, mask and test still did not
match resBits.
5-30 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
Notes

1 If a connection to this TAP controller has been selected already, this operation
happens automatically. If not, this call tries to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

2 The TAP Controller must be in Select-DR state before the function is used, and is
left in this state after the function has been performed.
User Guide
ARM DUI 0048A

5-31

TAPOp Procedure Calls
5.5.5 ARMTAP_AccessDR_W

Writes data to a TAP data register (could be the data bus scan chain on an ARM) and
performs one or more DCLKs. Data coming out of TDO is discarded.

(armtapop.h)

extern TAPOp_Error ARMTAP_AccessDR_W(
unsigned8 connectId,
ScanData40 *TDIbits,
unsigned8 TDIrev,
unsigned8 len,
unsigned8 WRoffset,
ScanData40 *WRmask,
unsigned8 nclks,
unsigned8 deselect

);

Arguments

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

TDIbits TDI is data read from here. This must not be NULL.

TDIrev If 0, you present TDI via the Multi-ICE Data Register;
otherwise, present TDI via the Reversed Data Register.

len Length of the selected data register (scan chain).

WRoffset Offset of the selected data register (scan chain) where you
start writing data. The rest of the scan chain is recirculated
(whatever comes out of the TDO pin is put back into TDI during
the scan). To write less than 40 bits, use WRmask.

WRmask A 40-bit mask that determines which bits are written to the data
register (scan chain) during a scan.

1 Bit is written.

0 Bit is recirculated, so that whatever comes
out of the TDO pin is put back into TDI
during the scan.

To write all 40 bits, WRmask can be set to NULL.

nclks The number of DCLKs to perform after the write (how times to
enter Run-Test/Idle).

Note: 0 < n <32.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections).
Otherwise the connection is deselected, giving other
connections a chance to perform operations.
5-32 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
Returns

Notes

1 If a connection to this TAP controller has been selected already, this operation
happens automatically. If not, this call tries to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

2 The TAP Controller must be in Select-DR state before the function is used, and is
left in this state after the function has been performed.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState The TAP controller is not in Select-DR-Scan.

9 TAPOp_BadParameter Failed because of one of the following:

TDIbits = NULL
len = 0
Wroffset >= len

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
User Guide
ARM DUI 0048A

5-33

TAPOp Procedure Calls
5.5.6 ARMTAP_AccessIR

Writes data to the TAP instruction register. Data coming out of TDO is discarded.

The length of the Instruction Register is already known by the Multi-ICE application because
this is part of the configuration data for each processor.

(armtapop.h)

extern TAPOp_Error ARMTAP_AccessIR(
unsigned8 connectId,
unsigned16 TDIbits,
unsigned8 TDIrev,
unsigned8 deselect

);

Arguments

Returns

Notes

1 If a connection to this TAP controller has been selected already, this operation
happens automatically. If not, this call tries to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

2 The TAP does NOT go through Run-Test/Idle, so if the ARM Data Bus scan chain
is selected no DCLK happens. The TAP Controller must be in Select-DR state
before the function is used, and is left in this state after the function has been
performed.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

TDIbits TDI data is read from here. This must not be NULL.

TDIrev If 0, present TDI via the Multi-ICE Data Register;
otherwise, present TDI via the Reversed Data Register.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections).
Otherwise, the connection is deselected, giving other
connections a chance to perform operations.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState The TAP controller is not in Select-DR-Scan.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
5-34 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.7 ARMTAP_AccessIR_1Clk

Writes data to the TAP instruction register, and performs one DCLK (goes through the
Run-Test/Idle state). Data coming out of TDO is discarded.

The length of the Instruction Register is already known by the Multi-ICE application as this
is part of the configuration data for each processor.

(armtapop.h)

extern TAPOp_Error ARMTAP_AccessIR_1Clk(
unsigned8 connectId,
unsigned16 TDIbits,
unsigned8 TDIrev,
unsigned8 deselect

);

Arguments

Returns

Notes

1 If a connection to this TAP controller has been selected already, this operation
happens automatically. If not, this call tries to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

2 The TAP Controller must be in Select-DR state before the function is used, and is
left in this state after the function has been performed.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

TDIbits TDI data is read from here. This must not be NULL.

TDIrev If 0, present TDI via the Multi-ICE Data Register;
otherwise, present TDI via the Reversed Data Register.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections).
Otherwise, the connection is deselected, giving other
connections a chance to perform operations.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState The TAP controller is not in Select-DR-Scan.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
User Guide
ARM DUI 0048A

5-35

TAPOp Procedure Calls
5.5.8 ARMTAP_ClockARM

Performs a number of ARM DCLKs. This function writes INTEST into the instruction
register, as it has to go through either the DR or IR states to get to Run-Test/Idle.

In general, it is always more efficient to call one of the ARMTAP_AccessDR functions which
combines DCLKs with the DR access, but sometimes this is not possible.

(armtapop.h)

extern TAPOp_Error ARMTAP_ClockARM(
unsigned8 connectId,
unsigned8 nclocks,
unsigned8 deselect

);

Arguments

Returns

Notes

1 If a connection to this TAP controller has been selected already, this operation
happens automatically. If not, this call tries to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

2 The TAP Controller must be in Select-DR state before the function is used, and is
left in this state after the function has been performed.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

nclocks The number of DCLKs to perform.

Note: 0 <= nclocks <= 31

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections).
Otherwise, the connection is deselected, giving other
connections a chance to perform operations.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState The TAP controller is not in Select-DR-Scan.

9 TAPOp_BadParameter Failed because nclks >= 32.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
5-36 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.9 GetServerName

Returns the name of the selected RPC Server. This procedure needs to be provided by the
user. The file rpcclient.c calls this procedure to find out the location of the Multi-ICE
Server.

(tapop.h)

int GetServerName(
char **ServerName

);

Arguments

Returns

Output ServerName The name/location of the RPC Server. For example:

"pc25"

0 No error.

Non-zero Failure (user-supplied values).
User Guide
ARM DUI 0048A

5-37

TAPOp Procedure Calls
5.5.10 rpc_finalise

Finalizes the RPC transport layer. You call this to close the TCP/IP connection. See also
rpc_initialise on page 5-39.

(tapop.h)

void rpc_finalise(void);

Arguments

None.

Returns

None.
5-38 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.11 rpc_initialise

Initializes the RPC transport layer. You call this before using any other RPC calls.See also
rpc_finalise on page 5-38.

(tapop.h)

int rpc_initialise(void);

Arguments

None.

Returns

0 No error.

Non-zero Failed to open RPC connection.
User Guide
ARM DUI 0048A

5-39

TAPOp Procedure Calls
5.5.12 TAPOp_AccessDR_RW

Reads and writes data from a TAP data register (scan chain).

(tapop.h)

extern TAPOp_Error TAPOp_AccessDR_RW(
unsigned8 connectId,
ScanData40 *TDIbits,
unsigned8 TDIrev,
ScanData40 *TDObits,
unsigned8 TDOrev,
unsigned8 len,
unsigned8 WRoffset,
ScanData40 *WRmask,
unsigned8 RDoffset,
unsigned8 deselect

);

Arguments

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

TDIbits The TDI data is read from here. This must not be NULL.

TDIrev If 0, you present TDI via the Multi-ICE Data Register; otherwise,
present TDI via the Reversed Data Register.

TDOrev If 0, you read TDO via the Multi-ICE Data Register; otherwise, read
TDO via the Reversed Data Register.

len Length of the selected data register (scan chain).

WRoffset Offset of the selected data register (scan chain) where you start
writing data. The rest of the scan chain is recirculated (whatever
comes out of the TDO pin is put back into TDI during the scan).
To write less than 40 bits, use WRmask.

WRmask A 40-bit mask that determines which bits are written to the data
register (scan chain) during a scan.

1 Bit is written.

0 Bit is recirculated, so that whatever comes out of
the TDO pin is put back into TDI during the scan.

To write all 40 bits, WRmask can be set to NULL.

RDoffset Offset of the selected data register (scan chain) where you start
reading data.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections). Otherwise,
the connection is deselected, giving other connections a chance to
perform operations.
5-40 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
Returns

Notes

1 The TAP Controller must be in Run-Test/Idle state before the function is used, and
is left in this state after the function has been performed.

2 If a connection to this TAP controller has been selected already then this operation
happens automatically. If not, this call attempts to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

Output TDObits TDO data is put here. This must not be NULL.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState The TAP controller is not in Run-Test/Idle.

9 TAPOp_BadParameter Failed for one of the following reasons:

TDIbit = NULL
TDObit = NULL
len = 0
RDoffset >= len
WRoffset >= len

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
User Guide
ARM DUI 0048A

5-41

TAPOp Procedure Calls
5.5.13 TAPOp_AccessDR_W

Writes data to a TAP data register (scan chain). Data coming out of TDO is discarded.

(tapop.h)

extern TAPOp_Error TAPOp_AccessDR_W(
unsigned8 connectId,
ScanData40 *TDIbits,
unsigned8 TDIrev,
unsigned8 len,
unsigned8 WRoffset,
ScanData40 *WRmask,
unsigned8 deselect

);

Arguments

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

TDIbits TDI data is read from here. This must not be NULL.

TDIrev If 0, you present TDI via the Multi-ICE Data Register; otherwise,
present TDI via the Reversed Data Register.

len Length of the selected data register (scan chain).

WRoffset Offset of the selected data register (scan chain) where you start
writing data. The rest of the scan chain is recirculated (whatever
comes out of the TDO pin is put back into TDI during the scan).
To write less than 40 bits, use WRmask.

WRmask A 40-bit mask that determines which bits are written to the data
register (scan chain) during a scan.

1 Bit is written.

0 Bit is recirculated, so that whatever comes out of
the TDO pin is put back into TDI during the scan.

To write all 40 bits, WRmask can be set to NULL.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections). Otherwise,
the connection is deselected, giving other connections a chance to
perform operations.
5-42 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
Returns

Notes

1 The TAP Controller must be in Run-Test/Idle state before this function is used, and
is left in this state after the function has been performed.

2 If a connection to this TAP controller has been selected already, this operation
happens automatically. If not, this call attempts to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState The TAP controller is not in Run-Test/Idle.

9 TAPOp_BadParameter Failed for one of the following reasons:

TDIbit = NULL
WRoffset >= len

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
User Guide
ARM DUI 0048A

5-43

TAPOp Procedure Calls
5.5.14 TAPOp_AccessIR

Writes data to the TAP instruction register. Data coming out of TDO is discarded.

The length of the Instruction register is already known by the Multi-ICE Application as this is
part of the configuration data for each processor.

(tapop.h) extern TAPOp_Error TAPOp_AccessIR(
unsigned8 connectId,
unsigned16 TDIbits,
unsigned8 TDIrev,
unsigned8 deselect

);

Arguments

Returns

Notes

1 The TAP Controller must be in Run-Test/Idle state before the function is used, and
is left in this state after the function has been performed.

2 If a connection to this TAP controller has been selected already, this operation
happens automatically. If not, this call tries to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

TDIbits TDI data is read from here. This must not be NULL.

TDIrev If 0, you present TDI via the Multi-ICE Data Register; otherwise,
present TDI via the Reversed Data Register.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections). Otherwise,
the connection is deselected, giving other connections a chance to
perform operations.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState The TAP controller is not in Run-Test/Idle.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
5-44 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.15 TAPOp_AnySequence_RW

Perform a sequence of TCKs, with explicitly specified TMS and TDI inputs. TDO values are
read out.

(tapop.h)

extern TAPOp_Error TAPOp_AnySequence_RW(
unsigned8 connectId,
unsigned8 numTCKs,
unsigned32 *TDIbits,
unsigned32 *TMSbits,
unsigned32 *TDObits,
unsigned8 deselect

);

Arguments

Returns

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

numTCKs Number of TCKs to perform (max 255).

TDIbits TDI data is read from here. This must not be NULL.

TMSbits TMS data is read from here. This must not be NULL.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections). Otherwise,
the connection is deselected, giving other connections a chance to
perform operations.

Output TDObits TDO data is written to here. This must not be NULL.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState Deselected when not in Select-DR-Scan or
Run-Test/Idle.

9 TAPOp_BadParameter Failed for one of the following reasons:

TDIbits = NULL
TDObits = NULL
TMSbits = NULL
numTCKs = 0

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.

32 TAPOp_AnySeqUsedBadPath An Exit2-IR/DR -> Shift-IR/DR transition
was performed.
User Guide
ARM DUI 0048A

5-45

TAPOp Procedure Calls
This interface is a “virtual TAP controller” interface—in other words, if there are actually
several TAP controllers connected in series, the Server will deal with having to insert extra
bits into the IR and DR scan chains transparently to the caller of this function. For this to
work, however, some restrictions are imposed on what sequences can be performed. These
restrictions are outlined below.

Note If a connection to this TAP controller has already been selected, this operation happens
automatically. If not, this call will attempt to select the connection. If the connection cannot
be selected (because another TAP controller is being accessed), this operation is not
performed and TAPOp_UnableToSelect is returned. The caller should try again later.

Post conditions

When the connection is deselected, the TAP controller must be left in one of
Select-DR-Scan or Run-Test/Idle. If this is not done, an error will result.

Restrictions

1 When shifting data into an IR or DR register, all the shifts (performed when the TAP
Controller start state is Shift-IR/DR) must occur together—in other words, after
performing some such shifts, Shift-IR/DR should not be left and then re-entered
without going through Capture-IR/DR. If the user does this, the Server will return
an error indicating that the transition Exit2-IR/DR -> Shift-IR/DR was performed.
The client code should be recoded to avoid this case.

2 The Multi-ICE Server knows the length of the IR register. If the number of shifts into
this register is not the same as the length according to the Server, the Server will
ignore the data shifted into IR, and will instead put in a BYPASS instruction,
causing an error to be returned. This ensures that other TAP controllers cannot be
accidentally put into strange states by a bug in this TAP controller’s client.

3 As a consequence of IR length checking, the data to be shifted into the IR must be
in a single TAPOp_AnySequence_RW call—it must not be split over two calls. This
is necessary so that the call can ensure that the correct number of IR shifts are
performed before processing any of them.

4 The number of shifts performed in Shift-DR must be the same as the length of the
scan chain. If it is not, then in a multi-processor system the operation is undefined
due to the insertion of extra TCKS by the Server to bypass other TAP controllers.

5 If used in a macro, all 256 bits must be passed. Use fixed / variable U32s; numTCKs
determine how many are actually used. For a single AnySequence_RW call, a
pointer to an array is passed.

33 TAPOp_AnySeqWrongIRLength The wrong number of Shift-IR TCKs was
detected.
5-46 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.16 TAPOp_AnySequence_W

Performs a sequence of TCK’s, with explicitly specified TMS and TDI inputs. TDO is ignored.

(tapop.h)

extern TAPOp_Error TAPOp_AnySequence_W(
unsigned8 connectId,
unsigned8 numTCKs,
unsigned32 *TDIbits,
unsigned32 *TMSbits,
unsigned8 deselect

);

Arguments

Returns

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

numTCKs Number of TCKs to perform (maximum 255).

TDIbits TDI data is read from here. This must not be NULL.

TMSbits TMS data is read from here. This must not be NULL.

deselect 0 indicates that the connection to this TAP controller remains
selected (excluding access to other TAP controller
connections). Otherwise, the connection is deselected, giving
other connections a chance to perform operations.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState Deselected when not in Select-DR-Scan or
Run-Test/Idle.

9 TAPOp_BadParameter Failed for one of the following reasons:

TDIbits = NULL
TMSbits = NULL
numTCKs = 0

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.

32 TAPOp_AnySeqUsedBadPath An Exit2-IR/DR -> Shift-IR/DR transition
was performed.

33 TAPOp_AnySeqWrongIRLength The wrong number of Shift-IR TCKs was
detected.
User Guide
ARM DUI 0048A

5-47

TAPOp Procedure Calls
This interface is a “virtual TAP controller” interface—in other words, if there are actually
several TAP controllers connected in series, the Server will deal with having to insert extra
bits into the IR and DR scan chains transparently to the caller of this function. For this to
work, however, some restrictions are imposed on what sequences can be performed. These
restrictions are outlined below.

Note If a connection to this TAP controller has already been selected, this operation happens
automatically. If not, this call will attempt to select the connection. If the connection cannot
be selected (because another TAP controller is being accessed), this operation is not
performed and TAPOp_UnableToSelect is returned. The caller should try again later.

Post conditions

When the connection is deselected, the TAP controller must be left in one of
Select-DR-Scan or Run-Test/Idle. If this is not done, an error will result.

Restrictions

1 When shifting data into an IR or DR register, all the shifts (performed when the TAP
Controller start state is Shift-IR/DR) must occur together—in other words, after
performing some such shifts, Shift-IR/DR should not be left and then re-entered
without going through Capture-IR/DR. If the user does this, the Server will return
an error indicating that the transition Exit2-IR/DR -> Shift-IR/DR was performed.
The client code should be recoded to avoid this case.

2 The Multi-ICE Server knows the length of the IR register. If the number of shifts into
this register is not the same as the length according to the Server, the Server will
ignore the data shifted into IR, and will instead put in a BYPASS instruction,
causing an error to be returned. This ensures that other TAP controllers cannot be
accidentally put into strange states by a bug in this TAP controller’s client.

3 As a consequence of IR length checking, the data to be shifted into the IR must be
in a single TAPOp_AnySequence_W call—it must not be split over two calls. This
is necessary so that the call can ensure that the correct number of IR shifts are
performed before processing any of them.

4 The number of shifts performed in Shift-DR must be the same as the length of the
scan chain. If it is not, then in a multi-processor system the operation is undefined
due to the insertion of extra TCKS by the Server to bypass other TAP controllers.

5 If used in a macro, all 256 bits must be passed. Use fixed / variable U32s; numTCKs
determine how many are actually used. For a single AnySequence_W call, a
pointer to an array is passed.
5-48 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.17 TAPOp_CloseConnection

At the end of a debug session, this function kills a connection to a TAP controller for the
TAPOp client. After this call, no further TAPOp functions may be called with this
connection ID.

This should not be confused with deselecting a connection, which occurs when a TAPOp
function is called and the deselect parameter is non-zero.

See also TAPOp_OpenConnection on page 5-58.

(tapop.h)

extern TAPOp_Error TAPOp_CloseConnection(
unsigned8 connectId

);

Arguments

Returns

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
User Guide
ARM DUI 0048A

5-49

TAPOp Procedure Calls
5.5.18 TAPOp_DefineMacro

Adds a ‘line’ (one TAPOp / ARMTAP function call) to a macro. Some parameters can be
passed at definition time, and these are fixed so that they need not be passed in at runtime.

This function should be called both for the first ‘line’ of a macro and for subsequent ‘lines’.
You can have one line executed a number of times; this allows the Server to optimize some
operations providing better performance. When this facility is used, only one block of fixed
parameter data is used each time the line is executed. However, each time the line is
executed, a new set of variable data is used and new results are output.

See also the examples in Using TAPOp Macros on page 5-11.

(tapmacro.h)

extern TAPOp_Error TAPOp_DefineMacro(
unsigned8 connectId,
unsigned8 macroNo,
char *callDetails,
unsigned8 nTimes,
void *fixedParamValues,
int paramSize

);

Arguments

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

macroNo The number of the macro to run (local to this connection).

callDetails fn-name is used if there are no fixed parameters
for this invocation of fn-name

fn-name:list is used if there are fixed parameters.
fn-name should be the name of one of
the exported TAPOp or ARMTAPOp
functions—for example,
ARMTAP_AccessDR_W

The list of fixed parameters consists of a series of single
characters—for example, “1256”, which must be in
numerically increasing order. Each digit refers to the
corresponding (starting at 1) structure element in the
corresponding MAC_xxx structure defined in
macstruct.h. Any parameters listed are fixed, and the
fixed values are passed in fixedParamValues.

Note: Parameters 10,11,12 and upwards are specified
with ‘A’, ‘B’, ‘C’ and so on. This is not hex because it does
not stop at ‘F’. Currently, however, there are no definitions
which need more than 15 parameters, so it can be
regarded as hexadecimal. There is no parameter ‘0’.
5-50 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
Returns

nTimes The number of times the line of this macro should be
executed. Each time it is executed, the same fixed
parameters are used, but a new set of variable parameters
is used, and results are added to the result block.

fixedParamValues A block of data holding the fixed parameters for this
invocation of this macro.

paramSize The size of the block of fixed parameter data. This is
needed so it can be easily sent over RPC.

0 TAPOp_NoError No error

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

8 TAPOp_InBadTAPState TAP controller is not in Run-Test/Idle.

9 TAPOp_BadParameter Unrecognized fn-name in callDetails.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.

21 TAPOp_TooManyMacros Maximum number of macros exceeded.
The maximum is 1000.

22 TAPOp_TooManyMacroLines Too many lines in the macro. The maximum
is 1000.

23 TAPOp_BadFixedParamNo Bad Parameter Number specified.

34 TAPOp_UnknownProcedureName Unknown procedure name in
DefineMacro call.

35 TAPOp_CantUseProcInMacro Procedure specified in DefineMacro call
cannot be run in a macro.
User Guide
ARM DUI 0048A

5-51

TAPOp Procedure Calls
5.5.19 TAPOp_DeleteAllMacros

Deletes all macros for a particular connection.

(tapmacro.h)

extern TAPOp_Error TAPOp_DeleteAllMacros(
unsigned8 connectId

);

Arguments

Returns

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

0 TAPOp_NoError No error.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing this
request.
5-52 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.20 TAPOp_DeleteMacro

Deletes a currently defined macro for a particular connection.

(tapmacro.h)

extern TAPOp_Error TAPOp_DeleteMacro(
unsigned8 connectId,
unsigned8 macroNo

);

Arguments

Returns

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

macroNo The number of the macro to delete.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.

20 TAPOp_UndefinedMacro macroNo is not defined for that connectId.
User Guide
ARM DUI 0048A

5-53

TAPOp Procedure Calls
5.5.21 TAPOp_DisplayMacro

Sends a request to the Multi-ICE Server to display the lines of a macro. This is intended
solely for use when debugging TAPOp clients.

(tapmacro.h)

extern TAPOp_Error TAPOp_DisplayMacro(
unsigned8 connectId,
unsigned8 macroNo

);

Arguments

Returns

Note

If a macro has not been defined, this is reported on the Server console. No error is returned.

Output format

The macro information is displayed on the Multi-ICE Server in the following format:

line_no : TAPOp/ARMTAP_instr, fixed_params, macro_line_executions

For example:

-------------------------- Macro no. 1 -----------------------

0: ARMTAP_AccessDR_W , plist=0x1F , nTimes=1

1: ARMTAP_AccessDR_W , plist=0x1E , nTimes=14

In line 0:

plist=0x1F = bin 0001 1111

showing that parameters 1,2,3,4, and 5 have been fixed.

In line 1:

plist=0x1E = bin 0001 1110

showing parameters 2,3,4, and 5 have been fixed.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

 macroNo The number of the macro to display (local to this connection).

0 TAPOp_NoError No error.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
5-54 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.22 TAPOp_FillMacroBuffer

Loads a buffer in the Server with variable parameters, before running a macro from the
buffer. See TAPOp_RunBufferedMacro on page 5-66 for an explanation of how to use this
function.

(tapmacro.h)

TAPOp_Error TAPOp_FillMacroBuffer(
unsigned8 connectId,
unsigned8 bufferNo,
void *variableParamValues,
int paramSize

);

Arguments

Returns

Input connectId Connection ID, as returned by
TAPOp_OpenConnection.

bufferNo The number of the buffer to load with the variable data
block. This must be 0 or 1.

variableParamValues A block of data holding the variable parameters to be
written to the buffer.

paramSize The size of the block of variable parameter data. This
is needed so the data can be sent easily over RPC.

0 TAPOp_NoError No error.

7 TAPOp_NoSuchConnection The connectId was not recognized.

9 TAPOp_BadParameter The bufferNo is not 0 or 1.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
User Guide
ARM DUI 0048A

5-55

TAPOp Procedure Calls
5.5.23 TAPOp_GetDriverDetails

Before a debugger opens a connection to a device on the Multi-ICE Server, it must find out
from the Multi-ICE Server which devices are available. TAPOp_GetDriverDetails
performs this function by getting a list of drivers (devices) from the Server. You use this
information to find out which drivers (and therefore which TAP controllers) are available.

(tapop.h)

extern TAPOp_Error TAPOp_GetDriverDetails(
MultiICE_DriverDetails *DriverDets,
unsigned32 *NumDrivers,
unsigned32 *VersionNo

);

Arguments

Returns

In/Out DriverDets The structures where you put the driver details. See the
MultiICE_DriverDetails structure definition for details.
This can be found in mice.h .

NumDrivers The number of driver structures pointed to by DriverDets.
Before you call this procedure, set NumDrivers to the
maximum number of drivers you have allocated space for.
The procedure returns the actual number in DriverDets.

Output VersionNo Version number of the Multi-ICE application.

0 TAPOp_NoError No error.

4 TAPOp_NotInitialised The Multi-ICE Server is not initialized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
5-56 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.24 TAPOp_LogString

This function inserts a user-supplied string into the log file.

(tapop.h)

extern TAPOp_Error TAPOp_LogString(
unsigned8 connectId,
char *message

);

Arguments

Returns

Note

This call does not require a selected connection to a TAP controller, as it is just providing
debug output.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

message The string to output to the log file. The string length is limited to
255 characters.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
User Guide
ARM DUI 0048A

5-57

TAPOp Procedure Calls
5.5.25 TAPOp_OpenConnection

At the beginning of a debug session, this function creates a connection to a TAP controller
for the TAPOp client, and returns a connection ID to be used when calling other TAPOp
functions.

This function should not be confused with selecting a connection that occurs when a TAPOp
function is called and a different connection was previously selected.

The set of scan chains connected to the TAP specified is listed, and the implementation
checks that two connections to the same TAP do not conflict.

See also TAPOp_CloseConnection on page 5-49.

(tapop.h)

extern TAPOp_Error TAPOp_OpenConnection(
unsigned8 TAPPos,
unsigned8 *connectId,
unsigned8 numScanChains,
unsigned8 *scanChains,
unsigned8 startState,
unsigned8 IRlen,
unsigned32 intest,
unsigned8 SCSRlen,
unsigned32 scan_n,
unsigned8 allowAutoDisconnect,
char *debuggerName,
char *driverName

);

Arguments

Input TAPPos The position in the scan chain of the TAP controller to
connect to. Position 0 is closest to TDI.

numScanChains The number of scan chains claimed by this
connection.

scanChains An array containing the numbers of the scan chains
claimed by this connection.

startState The startup state of TAP controller for this connection:

1 Start the TAP controller(s) in
Select-DR-Scan.

2 Start the TAP controller(s) in Run-Test/Idle.

Other values are invalid.

IRlen This is the length of the Instruction Register of the TAP
being connected. This is compared with the length of
the device stored in IRlength.arm.
5-58 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
Returns

intest INTEST instruction bit pattern for the TAP that this
connection is talking to. If it is 0, the TAP does not
support multiple scan chains.

SCSRlen This is the length of the scan chain select register for
the TAP being connected.

scan_n SCAN_N instruction bit pattern for the TAP that this
connection is talking to. It is only valid if SCSRlen!=
0.

allowAutoDisconnect This flag is set if the server is allowed to disconnect
this client due to another client attempting to connect.
If this client implements the standard heartbeat
mechanism (automatic for Win32 clients), this flag
should be set. If this is a non-Win32 client and there is
no special heartbeat set up, this flag should be 0.

debuggerName A null-terminated string that gives the identity of the
debugger.

driverName A null-terminated string which contains the driver
name from GetDriverDetails for this connection.

Output connectId The connection ID to be used when calling other
TAPOp functions.

0 TAPOp_NoError No error.

3 TAPOp_TAPNotPresent Bad TAP controller position.

4 TAPOp_NotInitialised The Multi-ICE Server is not initialized.

5 TAPOp_TooManyConnections There are no free connections.

9 TAPOp_BadParameter Bad parameter value passed.

13 TAPOp_ScanChainAlreadyClaimed One of the required scan chains has
already been claimed by another
connection.

18 TAPOp_ParameterConflicts A parameter conflicts with the
configuration data.

19 TAPOp_RPC_ConnectionFail The RPC connection died while
processing this request.
User Guide
ARM DUI 0048A

5-59

TAPOp Procedure Calls
5.5.26 TAPOp_PingServer

This provides a heartbeat function. It is used to poll the Server so that the Server knows the
client is still connected during periods of inactivity. Although this function is part of the TAPOp
public interface, it is not normally used, as rpcclient.c normally calls this function once
per second when a connection is active.

(tapop.h)

extern TAPOp_Error TAPOp_PingServer(
unsigned8 connectId

);

Arguments

Returns

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

0 TAPOp_NoError No error.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while
processing this request.
5-60 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.27 TAPOp_ReadCommonData

Reads the data block which is common to all the debuggers connected to Multi-ICE.

(tapshare.h)

extern TAPOp_Error TAPOp_ReadCommonData(
unsigned8 connectId,
unsigned32 *commonBlk,
unsigned8 deselect

);

Arguments

Returns

Note

If a connection to this TAP controller has been selected already, this operation happens
automatically. If not, this call tries to select the connection. If the connection cannot be
selected (because another TAP controller is being accessed), this operation is not
performed and TAPOp_UnableToSelect is returned. The caller should try again later.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections).
Otherwise the connection is deselected, giving other connections
a chance to perform operations.

Output commonBlk Four words of common data whose meaning is determined by the
debugger. This buffer is allocated by the caller.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

9 TAPOp_BadParameter Failed because commonBlk = NULL.

19 TAPOp_RPC_ConnectionFail The RPC connection died while
processing this request.
User Guide
ARM DUI 0048A

5-61

TAPOp Procedure Calls
5.5.28 TAPOp_ReadMICEFlags

Reads various flags stored in the Server. These hold information relating to the state of the
target power and reset condition and the state of the user input bits.

(tapshare.h)

extern TAPOp_Error TAPOp_ReadMICEFlags(
unsigned8 connectId,
unsigned8 *flags

);

Arguments

Returns

Flags

TAPOp_FL_TargetPowerOffNow

The target’s power is currently off. This is an error condition.

TAPOp_FL_TargetPowerHasBeenOff

The target’s power has been off since the last TAPOp_OpenConnection call was made.
This is also an error condition, because turning the target on and off in the middle of a
session will cause problems.

TAPOp_FL_InResetNow

The target is currently in Reset (the target’s reset signal is currently set). This is generally
an error condition.

TAPOp_FL_TargetHasBeenReset

The target has been reset since the last TAPOp_OpenConnection call was made. This is
generally an error condition.

TAPOp_FL_UserIn1

The state of the user-defined input signal 1 from Multi-ICE.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

Output flags This function writes the state of the flags into the variable
passed by the caller. The bits set are defined in Flags below.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

9 TAPOp_BadParameter Failed because flags = NULL.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
5-62 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
TAPOp_FL_UserIn2

The state of the user-defined input signal 2 from Multi-ICE.

TAPOp_FL_UserOut1

Current state of user-defined output 1 from Multi-ICE.

TAPOp_FL_UserOut2

Current state of user-defined output 2 from Multi-ICE.
User Guide
ARM DUI 0048A

5-63

TAPOp Procedure Calls
5.5.29 TAPOp_ReadPrivateFlags

Reads the private word of flags for this processor.

(tapshare.h)

extern TAPOp_Error TAPOp_ReadPrivateFlags(
unsigned8 connectId,
unsigned32 *flags

);

Arguments

Returns

Flags

TAPOp_ProcRunning

A TAPOp client should set this flag when the processor starts executing code. It should be
cleared when the processor halts. This can be used by the Multi-ICE Server to indicate
whether or not other processors should be started or stopped according to the Multi-ICE
user’s requirements. This is a write-only flag for the TAPOp client.

TAPOp_ProcHasStopped
TAPOp_ProcStoppedByServer

These two flags are used to determine if and why a processor has stopped. A client should
poll the TAPOp_ProcHasStopped flag when the processor is running. If it set, the
TAPOp_ProcStoppedByServer flag will indicate why. If it is set, the Multi-ICE Server has
stopped the processor because some other processor has stopped and a synchronized stop
condition was set up. If TAPOp_ProcStoppedByServer is not set, the processor has
stopped of its own accord—for example, because it hit a breakpoint. These flags are
read-only for a client.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

Output flags Private word of flags. The flag bits are the TAPOp_ flags described
in Flags below.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

9 TAPOp_BadParameter Failed because flags = NULL.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
5-64 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
TAPOp_DownloadingCode

A debugger should set this flag immediately before starting to download code to the target
processor. This allows a user output bit to be set when this occurs, which is potentially useful
on a system that can switch between very slow and very fast clocks, as fast clocking will
speed up download considerably. Similarly, when the download has completed, this bit
should be cleared. This flag is read-only for the Server.

TAPOp_ProcStartREQ
TAPOp_ProcStartACK

These two flags control synchronized starting of processors.
If TAPOp_UserWantsSyncStart is set, the debugger should set TAPOp_ProcStartREQ
to request the Server to start the processor. When all the debuggers have set their
TAPOp_ProcStartREQ flags, the Server will start all processors together, and set the
TAPOp_ProcStartACK flag. TAPOp_ProcStartREQ is read-only for the Server.
TAPOp_ProcStartACK is read-only for a client.

TAPOp_UserWantsSyncStart
TAPOp_UserWantsSyncStop

These two flags are read-only, and will be set by the Server if the user has selected sync
start and/or stop from the dialog. These flags are read-only for a client.
User Guide
ARM DUI 0048A

5-65

TAPOp Procedure Calls
5.5.30 TAPOp_RunBufferedMacro

This is the same as TAPOp_RunMacro except the variable data is not passed in this call; it
has already been downloaded into one of two buffers using TAPOp_FillMacroBuffer.
This is useful for two reasons:

• TAPOp_FillMacroBuffer cannot return a BUSY (TAPOp_UnableToSelect)
error, so under normal circumstances it does not fail. This means that the variable
data for a RunMacro call does not need to be re-sent if the Server is busy. Because
the data transfer takes most of the time and processor bandwidth, this improves
performance on multi-processor systems where the Server often gives BUSY
replies.

• As there are two buffers, a multi-threaded client can be loading one buffer while
running a macro from the other. This overlap of the data transfer and execute
portions of the RunMacro calls improves performance and ensures that the
interface between client and Server is fully utilized. This is particularly important on
slow interfaces (for example, Ethernet).

Like TAPOp_RunMacro, this call returns TAPOp_UnableToSelect when the Server is
busy and it should be handled in the same way. The overhead of re-sending this call is small
as it does not contain the variable data block.

(tapmacro.h)

TAPOp_Error TAPOp_RunBufferedMacro(
unsigned8 connectId,
unsigned8 macroNo,
unsigned8 bufferNo,
int *lineno_error,
int *loopno_error,
void *resultValues,
int *resultSize,
int nTimes,
unsigned8 deselect

);

Arguments

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

macroNo The number of the macro to run (local to this connection).

bufferNo The number of the buffer that contains the variable data block.
This must be 0 or 1 and the data must have been loaded before
this call (see above).

nTimes The number of times the macro is run (parameters are read and
results are written cumulatively from/to the data arrays).
5-66 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
Return

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections).
Otherwise, the connection is deselected, giving other
connections a chance to perform operations.

In/Out resultSize On entry, this indicates the maximum amount of data that can
fit in resultValues. On exit, the actual amount of data in
resultValues is returned.

Output lineno_error The macro line number that caused the error. This is only valid
if TAPOp_RunBufferedMacro returned an error.

0 indicates the call to TAPOp_RunBufferedMacro
failed—for example, an undefined macro number
was specified

1,2,3.. indicate failure on line 1, 2, 3 and so on of the macro

loopno_error Macro loop number which caused the error. This is only valid if
TAPOp_RunBufferedMacro actually returned an error. For
example, if a macro call has nTimes=3 and it fails on the third
time the macro is run, loopno_error will be 3.

resultValues A block of data into which the results of the functions called by
this macro are placed. This is allocated by the caller.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.

36 TAPOp_CouldNotBuildCompleteParameterList

Parameters were missing during either the
macro define or execution.

* Other Any other errors that the components of the
macro can return.
User Guide
ARM DUI 0048A

5-67

TAPOp Procedure Calls
5.5.31 TAPOp_RunMacro

Runs a previously defined macro, passing in the variable data and reading out any results
from running the macro.

(tapmacro.h)

extern TAPOp_Error TAPOp_RunMacro(
unsigned8 connectId,
unsigned8 macroNo,
void *variableParamValues,
int paramSize,
int *lineno_error,
int *loopno_error,
void *resultValues,
int *resultSize,
int nTimes,
unsigned8 deselect

);

Arguments

Input connectId Connection ID, as returned by
TAPOp_OpenConnection.

macroNo The number of the macro to run (local to this
connection).

variableParamValues A block of data holding the variable parameters for
this invocation of this macro.

paramSize The size of the block of variable parameter data. This
is needed so the data can be easily sent over RPC.

nTimes The number of times the macro is run (parameters
are read and results are written cumulatively from/to
the data arrays).

deselect If 0, the connection to this TAP controller remains
selected (excluding access to other TAP controller
connections). Otherwise the connection is
deselected, giving other connections a chance to
perform operations.

In/Out resultSize On entry, this indicates the maximum amount of data
that will fit in resultValues. On exit, the actual
amount of data in resultValues is returned.

Output lineno_error Gives the macro line number which caused the error.
This is only valid if TAPOp_RunMacro returned an
error. The numbers start from 0.
5-68 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
Returns

Note

Some parameters may have been fixed at define time. These do not need to be passed in
at runtime.

loopno_error Macro loop number which caused the error. This is
only valid if TAPOp_RunMacro actually returned an
error. For example, if a macro call has nTimes=3

3 and it fails on the third time the macro is run,
loopno_error will be 3.

resultValues A block of data where the results of the functions
called by this macro are put. This is allocated by the
caller.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.

36 TAPOp_CouldNotBuildCompleteParameterList

Parameters were missing during either the
macro define or execution.

* Other Any other errors the components of the macro
can return.
User Guide
ARM DUI 0048A

5-69

TAPOp Procedure Calls
5.5.32 TAPOp_SetControlMacros

Tells the Multi-ICE Server which macros to use for synchronized starting/stopping of
processors. Before calling this function, the client must define three macros that perform the
following functions:

eventMacro

This macro is periodically run by the Server while the processor is running
(indicated by the state of the private flags set by the debugger). The last line of this
macro must be TAPOp_AccessDR_RW or ARMTAP_AccessDR_RW. The result of
the data read from this function is AND’ed with eventMask and XOR’ed with
eventXOR. If the result is zero, an event is recognized. When the Server
recognizes an event, it runs the other processors’ stopMacros (if marked for
synchronized stopping on the Server).
The typical use of eventMacro is to recognize a breakpoint condition. This is not
the only possible use; any event that can be recognized using a data chain read
and mask can be set up as a trigger for stopMacro (which does not have to be
written to stop the processor).

preExecMacro

If the TAPOp_PreExecMacroRequired flag is set, this macro will be run before
the executeMacro; it is used to set up the processor state before actually starting
it. The Server runs the execute macros in the following order:

1 All the preExec macros are run one by one for each processor.

2 All the mergable execute macros are run in one pass of Run-Test/Idle as
described below.

3 Any non-mergable execute macros are run.

4 All the postExec macros are run one by one for each processor.

All the above steps are completed in one block—that is, no other TAPOp operations
take place during these steps. The sequence above will commence when all the
processors are ready to start—in other words, all the processors that sync start is
required for have had a TAPOp_ProcStartREQ from their respective debuggers.

executeMacro

This macro is run by the Server to start execution of the processor. If the last line
of the macro is an IR write and go through Run-Test/Idle (as it is on an ARM
processor), the IR writes from all the processors are merged. The whole set of IR
registers in the scan chain is written in one operation, and the resulting pass
through Run-Test/Idle starts all the processors on the same TCK.

postExecMacro

If the TAPOp_PostExecMacroRequired flag is set, this macro will be run by the
Server immediately after the executeMacro; it should be used to tidy up after
executeMacro. Since the last line of executeMacro has some constraints (as
described above), this extra macro can be used to sort out any loose ends—for
example, re-selecting scan chains and putting INTEST in the IR.

StopMacro

This macro is run to stop the processor as described above.
5-70 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
Note

The event, stop and combined execute macros should all start and stop in a known state,
as they can be run in any order by the Server.

Any TAPOp operations that a client makes while the processor is running with synchronous
stopping enabled must also start and stop in this same state, and should also not deselect
until these have finished (to ensure that running one of these macros cannot get in at an
inappropriate point).

(tapmacro.h)

TAPOp_Error TAPOp_SetControlMacros(
unsigned8 connectId,
unsigned8 flags,
unsigned8 eventMacroNo,
unsigned8 preExecMacroNo,
unsigned8 executeMacroNo,
unsigned8 postExecMacroNo,
unsigned8 stopMacroNo,
ScanData40 *eventMask,
ScanData40 *eventXOR

);

Arguments

Returns

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

flags Various flags (defined in Flags on page 5-72).

eventMacroNo The number of the macro to use as eventMacro.

preExecMacroNo The number of the macro to use as preExecMacro.

executeMacroNo The number of the macro to use as executeMacro.

postExecMacroNo The number of the macro to use as postExecMacro.

stopMacroNo The number of the macro to use as stopMacro.

eventMask The mask for detecting an event (see above).

eventXOR XOR for detecting an event (see above).

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.

20 TAPOp_UndefinedMacro The macro does not exist.
User Guide
ARM DUI 0048A

5-71

TAPOp Procedure Calls
Flags

TAPOp_SyncStopSupported

Set this flag to indicate that the client supports synchronized stopping. The Server will then
run the event macro periodically, and events will cause the stop macros to be run as
described below. Only set this flag if the client has defined a suitable event macro, stop
macro, eventMask and eventXOR.

TAPOp_SyncStartSupported

Set this following flag to indicate that the client supports synchronized starting. The Server
will then wait for this client’s TAPOp_ProcStartREQ private flag before starting the
processor. Only set this flag if the client has defined a suitable execute macro.

TAPOp_PreExecMacroUsed

Set this flag if a preExec macro is required.

TAPOp_PostExecMacroUsed

Set this flag if a postExec macro is required.
5-72 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.33 TAPOp_SetLogging

Switches debug logging for TAPOp functions on or off, for a particular TAP controller.

This call does not require a selected connection to a TAP controller, as it is just changing the
level of debugging output.

(tapop.h)

extern TAPOp_Error TAPOp_SetLogging(
unsigned8 connectId,
unsigned32 flags

);

Arguments

Returns

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

flags If 0, this switches logging off; otherwise, it is switched on.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing this
request.

27 TAPOp_CannotEnableLogging The Multi-Ice Server could not enable logging.
User Guide
ARM DUI 0048A

5-73

TAPOp Procedure Calls
5.5.34 TAPOp_SetSysResetSignal

Sets or clears the System Reset Signal.

(tapop.h)

extern TAPOp_Error TAPOp_SetSysResetSignal(
unsigned8 connectId,
unsigned8 level,
unsigned8 deselect

);

Arguments

Returns

Notes

1 If a connection to this TAP controller has been selected already, this operation
happens automatically. If not, this call attempts to select the connection. If the
connection cannot be selected (because another TAP controller is being
accessed), this operation is not performed and TAPOp_UnableToSelect is
returned. The caller should try again later.

2 When setting and then clearing System Reset, the Multi-ICE Server automatically
clears the sticky reset bit in the status register. This makes it possible for
applications to perform a system reset and then continue with the same connection
without the Server forcing a disconnect and reconnect to take place.
If you want the Server to take account of the system reset and force this (and other)
connections to disconnect and reconnect, call TAPOp_ReadMICEFlags while
system reset is asserted.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

level Specifies whether to set or clear System Reset:

0 clears the System Reset Signal

other sets the System Reset Signal

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections). Otherwise,
the connection is deselected, giving other connections a chance to
perform operations.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
5-74 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.35 TAPOp_WriteCommonData

Writes to the data block that is common to all the debuggers connected to Multi-ICE.

In order to safely write to the common data block, use an atomic Read-Modify-Write
sequence. A call of TAPOp_ReadCommonData and TAPOp_WriteCommonData can be
made atomic simply by not ‘deselecting’ after the Read call.

(tapshare.h)

extern TAPOp_Error TAPOp_WriteCommonData(
unsigned8 connectId,
unsigned32 *commonBlk,
unsigned8 deselect

);

Arguments

Returns

Note

If a connection to this TAP controller has been selected already, this operation happens
automatically. If not, this call tries to select the connection. If the connection cannot be
selected (because another TAP controller is being accessed), this operation is not
performed and TAPOp_UnableToSelect is returned. The caller should try again later.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

commonBlk Four words of common data, whose meaning is defined by the
debugger.

deselect If 0, the connection to this TAP controller remains selected
(excluding access to other TAP controller connections).
Otherwise, the connection is deselected, giving other
connections a chance to perform operations.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
User Guide
ARM DUI 0048A

5-75

TAPOp Procedure Calls
5.5.36 TAPOp_WriteMICEUser1

Sets the level of the user-defined Multi-ICE User 1 output bit.

(tapshare.h)

extern TAPOp_Error TAPOp_WriteMICEUser1(
unsigned8 connectId,
unsigned8 user1

);

Arguments

Returns

Note

For this procedure to have an effect on the state of the output bits, the Set by Driver option
must be chosen in the Server-User output bit settings. The TAP position for the connection
must also be selected.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

user1 Bit 0 indicates the state to which the User 1 signal is set.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not
recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while
processing this request.

26 TAPOp_NotAllocatedToThisConnection The User Output bit is not
allocated to the debugger by the
Multi-ICE Server.
5-76 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
5.5.37 TAPOp_WriteMICEUser2

Sets the level of the user-defined Multi-ICE User 2 output bit.

(tapshare.h)

extern TAPOp_Error TAPOp_WriteMICEUser2(
unsigned8 connectId,
unsigned8 user2

);

Arguments

Returns

Note

For this procedure to have an effect on the state of the output bits, the Set by Driver option
must be chosen in the Server-User output bit settings. The TAP position for the connection
must also be selected.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

 user2 Bit 0 indicates the state to which the User 2 signal is set.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not
recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while
processing this request.

26 TAPOp_NotAllocatedToThisConnection The User Output bit is not
allocated to the debugger by the
Multi-ICE Server.
User Guide
ARM DUI 0048A

5-77

TAPOp Procedure Calls
5.5.38 TAPOp_WritePrivateFlags

To write the private word of flags for this processor.

(tapshare.h)

extern TAPOp_Error TAPOp_WritePrivateFlags(
unsigned8 connectId,
unsigned32 flags

);

Arguments

Returns

Flags

TAPOp_ProcRunning

A TAPOp client should set this flag when the processor starts executing code. It should be
cleared when the processor halts. This can be used by the Multi-ICE Server to indicate
whether or not other processors should be started or stopped according to the Multi-ICE
user’s requirements. This is a write-only flag for the TAPOp client.

TAPOp_ProcHasStopped
TAPOp_ProcStoppedByServer

These two flags are used to determine if and why a processor has stopped. A client should
poll the TAPOp_ProcHasStopped flag when the processor is running. If it set, the
TAPOp_ProcStoppedByServer flag will indicate why. If it is set, the Multi-ICE Server has
stopped the processor because some other processor has stopped and a synchronized stop
condition was set up. If TAPOp_ProcStoppedByServer is not set, the processor has
stopped of its own accord—for example, because it hit a breakpoint. These flags are
read-only for a client.

Input connectId Connection ID, as returned by TAPOp_OpenConnection.

flags Private word of flags. The flag bits are described in Flags below.

0 TAPOp_NoError No error.

2 TAPOp_UnableToSelect Connection could not be made.

7 TAPOp_NoSuchConnection The connectId was not recognized.

19 TAPOp_RPC_ConnectionFail The RPC connection died while processing
this request.
5-78 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
TAPOp_DownloadingCode

A debugger should set this flag immediately before starting to download code to the target
processor. This allows a user output bit to be set when this occurs, which is potentially useful
on a system that can switch between very slow and very fast clocks, as fast clocking will
speed up download considerably. Similarly, when the download has completed, this bit
should be cleared. This flag is read-only for the Server.

TAPOp_ProcStartREQ
TAPOp_ProcStartACK

These two flags control synchronized starting of processors.
If TAPOp_UserWantsSyncStart is set, the debugger should set TAPOp_ProcStartREQ
to request the Server to start the processor. When all the debuggers have set their
TAPOp_ProcStartREQ flags, the Server will start all processors together, and set the
TAPOp_ProcStartACK flag. TAPOp_ProcStartREQ is read-only for the Server.
TAPOp_ProcStartACK is read-only for a client.

TAPOp_UserWantsSyncStart
TAPOp_UserWantsSyncStop

These two flags are read-only, and will be set by the Server if the user has selected sync
start and/or stop from the dialog. These flags are read-only for a client.
User Guide
ARM DUI 0048A

5-79

TAPOp Procedure Calls
5.6 TAPOp Error Codes
This section lists all the TAPOp error codes in numerical order.

0 TAPOp_NoError

No error. The operation completed successfully.

1 TAPOp_OutOfStore

Ran out of memory. This is a serious error.

2 TAPOp_UnableToSelect

Unable to select a connection for this TAP controller because another TAP controller
is being accessed. Try again later.

3 TAPOp_TAPNotPresent

The specified TAP controller is not present.

4 TAPOp_NotInitialised

The Multi-ICE Server has not yet been initialized.

5 TAPOp_TooManyConnections

The Multi-ICE Server has no free connections.

6 TAPOp_ClientsStillConnected

The Multi-ICE Server cannot finalize or reconfigure while clients are attached.

7 TAPOp_NoSuchConnection

Invalid connection ID was presented.

8 TAPOp_InBadTAPState

TAP controllers in unknown or incorrect state so Multi-ICE could not perform the
request.

9 TAPOp_BadParameter

Invalid parameter value specified.

10 TAPOp_ConnectionStillSelected

Connection still connected.

11 TAPOp_IRSCTooLong

The combined length of all instruction registers is too great for this version of Multi-ICE.

12 TAPOp_SCSRTooLong

One or more of the Scan Chain Select registers was too long.

13 TAPOp_ScanChainAlreadyClaimed

Connection could not be opened because one of the required scan chains is claimed
by another connection.

14 TAPOp_BadConfigurationData

The configuration data is unsuitable for this implementation.
5-80 User Guide
ARM DUI 0048A

TAPOp Procedure Calls
15 TAPOp_DriverLimitExceeded

On a call to TAPOp_GetDriverDetails, the array size allocation was not big
enough to return details of all the drivers found by Multi-ICE.

16 TAPOp_UnknownDriverName

On a call to TAPOp_OpenConnection, the driver name was not one that was passed
back to the client by TAPOp_GetDriverDetails.

17 TAPOp_CouldNotOpenPort

Could not open the requested port.

18 TAPOp_ParameterConflicts

A parameter conflicts with the configuration data.

19 TAPOp_RPC_ConnectionFail

RPC connection failure during a call.

20 TAPOp_UndefinedMacro

Tried to run a macro that has not been defined.

21 TAPOp_TooManyMacros

Tried to create more macros than MAX_MACROS allows. The maximum is 1000.

22 TAPOp_TooManyMacroLines

Tried to add more lines to a macro than MAX_MACRO_LINES allows.

23 TAPOp_BadFixedParamNo

When defining a macro line, reference to a non-existent parameter was given in the
list of fixed parameters.

24 TAPOp_OutOfMacroResultSpace

Ran out of macro result space.

25 TAPOp_MaskAndTestFailed

The Mask and Test operation did not match.

26 TAPOp_NotAllocatedToThisConnection

Resource is not allocated to this connection.

27 TAPOp_CannotEnableLogging

The log file is not set up.

28 TAPOp_TooManyProcessors

Maximum number of processors has been exceeded.

29 TAPOp_IncompatibleModel

The hardware connected is not the correct model version.

30 TAPOp_CouldNotOpenMulFile

A MUL file could not be opened.

31 TAPOp_BadlyFormattedMulFile

A MUL file was corrupt.
User Guide
ARM DUI 0048A

5-81

TAPOp Procedure Calls
32 TAPOp_AnySeqUsedBadPath

An Exit2-IR/DR -> Shift-IR/DR transition was performed.

33 TAPOp_AnySeqWrongIRLength

The wrong number of Shift-IR TCKs was detected.

34 TAPOp_UnknownProcedureName

Unknown procedure name in DefineMacro call.

35 TAPOp_CantUseProcInMacro

Procedure specified in DefineMacro call cannot be run in a macro.

36 TAPOp_CouldNotBuildCompleteParameterList

While attempting to run a macro, the Server was unable to build a complete parameter
list from the parameters supplied when it was defined and when it was executed.

66 TAPOp_MultiICEHWNotPoweredUp

The Server could not connect to the Multi-ICE hardware. It is possibly not powered up.

84 TAPOp_ParallelInterfaceTimeout

Parallel port interface timeout occurred.
5-82 User Guide
ARM DUI 0048A

This appendix describes and illustrates the JTAG pin connections.

A.1 Multi-ICE JTAG Interface Connections A-2

A.2 Multi-ICE Target Interface Voltage Levels A-5
A.3 TCK Frequencies A-6
A.4 TCK Values A-10

JTAG Interface ConnectionsA
A-1User Guide
ARM DUI 0048A

JTAG Interface Connections
A.1 Multi-ICE JTAG Interface Connections
This section displays the JTAG pin connections and lists any applicable notes for each pin.

 Figure A-1: JTAG pin connections

The connector is a 20-way header which mates with IDC sockets mounted on a ribbon
cable.

Note All GND pins should be connected to 0V on the target board.

5.6.1 Notes

1
3
5
7
9

11

15
17
19

2
4
6
8

10
12
14
16
18
20

13

VTref

nTRST

TDI
TMS

TCK

RTCK

TDO

nSRST
spare1

spare2

Vsupply

GND

GND
GND

GND

GND

GND

GND
GND

GND

Pin 1 VTref This is the target reference voltage. It indicates that the target has
power and it is also used to create the logic-level reference for the
input comparators on TDO and RTCK. It also controls the output
logic levels to the target. It is normally fed from Vdd on the target
board and may have a series resistor (though this is not
recommended).

Pin 2 Vsupply This is the supply voltage to Multi-ICE. It draws its supply current
from this pin via a step-up voltage convertor. This is normally fed by
the target Vdd which must not have a series resistor in the feed to
this pin. If the target supply voltage or its current capability is too
low, this path is broken by an external power jack on an inline
header.
A-2 User Guide
ARM DUI 0048A

JTAG Interface Connections
Pin 3 nTRST Open collector output from Multi-ICE to the Reset signal on the
target JTAG port. This pin should be pulled high on the target to
avoid unintentional resets when there is no connection.

Pin 4 GND

Pin 5 TDI Test Data In signal from Multi-ICE to the target JTAG port. It is
recommended that this pin is pulled to a defined state.

Pin 6 GND

Pin 7 TMS Test Mode signal from Multi-ICE to the target JTAG port. This pin
should be pulled up on the target so that the effect of any spurious
TCKs when there is no connection is benign.

Pin 8 GND

Pin 9 TCK Test Clock signal from Multi-ICE to the target JTAG port. It is
recommended that this pin is pulled to a defined state.

Pin 10 GND

Pin 11 RTCK Return Test Clock signal from the target JTAG port to Multi-ICE.
Targets that use TrackingICE technology need to synchronize the
JTAG inputs to internal clocks. To assist in meeting this
requirement, a returned (and re-timed) TCK can be used to
dynamically control the TCK rate. Multi-ICE provides Adaptive
Clock Timing, which waits for TCK changes to be echoed correctly
before making further changes. Targets that do not need to process
TCK can simply loop the pins on the PCB, thus at least calibrating
out the round-trip delay (ribbon cable and I/O drivers).

Pin 12 GND

Pin 13 TDO Test Data Out from the target JTAG port to Multi-ICE.

Pin 14 GND

Pin 15 nSRST Open collector output from Multi-ICE to the target system reset.
This is also an input to Multi-ICE so that a reset initiated on the
target may be reported to the debugger.

This pin should be pulled up on the target to avoid unintentional
resets when there is no connection.

Pin 16 GND

Pin 17 spare 1 This pin is not connected in the Multi-ICE unit. It is reserved for
compatibility with other equipment to be used as a debug request
signal to the target system.

Pin 18 GND
User Guide
ARM DUI 0048A

A-3

JTAG Interface Connections
Pin 19 spare 2 This pin is not connected in the Multi-ICE unit. It is reserved for
compatibility with other equipment to be used as a debug
acknowledge signal from the target system.

Pin 20 GND
A-4 User Guide
ARM DUI 0048A

JTAG Interface Connections
A.2 Multi-ICE Target Interface Voltage Levels
The graph in Figure A-2: Voltage relationships shows the relationship between the target
voltage and the Multi-ICE input voltage threshold and output voltage.

 Figure A-2: Voltage relationships

0

500

1000

1500

2000

2500

3000

3500

0 1000 2000 3000 4000 5000 6000

Target VTref / mV

V
o

h
 &

 V
i(

th
)

/ m
V

Voutput high

Input threshold
User Guide
ARM DUI 0048A

A-5

JTAG Interface Connections
A.3 TCK Frequencies
Table A-1: TCK frequencies gives the values that must be entered into the TCK fields on
the JTAG settings dialog for a particular TCK frequency. For example, for a 3.33MHz TCK
rate, use a value of 2 for TCK high and TCK low.

Freq (kHz) Period (ns) Value Freq (kHz) Period (ns) Value

10000.00 50 0 454.55 1100 21

5000.00 100 1 434.78 1150 22

3333.33 150 2 416.67 1200 23

2500.00 200 3 400.00 1250 24

2000.00 250 4 384.62 1300 25

1666.67 300 5 370.37 1350 26

1428.57 350 6 357.14 1400 27

1250.00 400 7 344.83 1450 28

1111.11 450 8 333.33 1500 29

1000.00 500 9 322.58 1550 30

909.09 550 10 312.50 1600 31

833.33 600 11 294.12 1700 48

769.23 650 12 277.78 1800 49

714.29 700 13 263.16 1900 50

666.67 750 14 250.00 2000 51

625.00 800 15 238.10 2100 52

588.24 850 16 227.27 2200 53

555.56 900 17 217.39 2300 54

526.32 950 18 208.33 2400 55

500.00 1000 19 200.00 2500 56

476.19 1050 20 192.31 2600 57

 Table A-1: TCK frequencies
A-6 User Guide
ARM DUI 0048A

JTAG Interface Connections
185.19 2700 58 59.52 8400 116

178.57 2800 59 56.82 8800 117

172.41 2900 60 54.35 9200 118

166.67 3000 61 52.08 9600 119

147.06 3400 80 50.00 10000 120

138.89 3600 81 48.08 10400 121

131.58 3800 82 46.30 10800 122

125.00 4000 83 44.64 11200 123

119.05 4200 84 43.10 11600 124

113.64 4400 85 41.67 12000 125

108.70 4600 86 40.32 12400 126

104.17 4800 87 39.06 12800 127

100.00 5000 88 36.76 13600 144

96.15 5200 89 34.72 14400 145

92.59 5400 90 32.89 15200 146

89.29 5600 91 31.25 16000 147

86.21 5800 92 29.76 16800 148

83.33 6000 93 28.41 17600 149

80.65 6200 94 27.17 18400 150

78.13 6400 95 26.04 19200 151

73.53 6800 112 25.00 20000 152

69.44 7200 113 24.04 20800 153

65.79 7600 114 23.15 21600 154

62.50 8000 115 22.32 22400 155

Freq (kHz) Period (ns) Value Freq (kHz) Period (ns) Value

 Table A-1: TCK frequencies (Continued)
User Guide
ARM DUI 0048A

A-7

JTAG Interface Connections
21.55 23200 156 7.44 67200 212

20.83 24000 157 7.10 70400 213

20.16 24800 158 6.79 73600 214

19.53 25600 159 6.51 76800 215

18.38 27200 176 6.25 80000 216

17.36 28800 177 6.01 83200 217

16.45 30400 178 5.79 86400 218

15.63 32000 179 5.58 89600 219

14.88 33600 180 5.39 92800 220

14.20 35200 181 5.21 96000 221

13.59 36800 182 5.04 99200 222

13.02 38400 183 4.88 102400 223

12.50 40000 184 4.60 108800 240

12.02 41600 185 4.34 115200 241

11.57 43200 186 4.11 121600 242

11.16 44800 187 3.91 128000 243

10.78 46400 188 3.72 134400 244

10.42 48000 189 3.55 140800 245

10.08 49600 190 3.40 147200 246

9.77 51200 191 3.26 153600 247

9.19 54400 208 3.13 160000 248

8.68 57600 209 3.00 166400 249

8.22 60800 210 2.89 172800 250

7.81 64000 211 2.79 179200 251

Freq (kHz) Period (ns) Value Freq (kHz) Period (ns) Value

 Table A-1: TCK frequencies (Continued)
A-8 User Guide
ARM DUI 0048A

JTAG Interface Connections
2.69 185600 252 2.52 198400 254

2.60 192000 253 2.44 204800 255

Freq (kHz) Period (ns) Value Freq (kHz) Period (ns) Value

 Table A-1: TCK frequencies (Continued)
User Guide
ARM DUI 0048A

A-9

JTAG Interface Connections
A.4 TCK Values
Table A-2: TCK values shows the corresponding frequencies for the TCK fields on the
JTAG settings dialog. As an example, for a value of 4 for TCK high and TCK low, the TCK
rate is 2MHz.

Value Period (ns) Freq (kHz) Value Period (ns) Freq (kHz)

0 50 10000.00 21 1100 454.55

1 100 5000.00 22 1150 434.78

2 150 3333.33 23 1200 416.67

3 200 2500.00 24 1250 400.00

4 250 2000.00 25 1300 384.62

5 300 1666.67 26 1350 370.37

6 350 1428.57 27 1400 357.14

7 400 1250.00 28 1450 344.83

8 450 1111.11 29 1500 333.33

9 500 1000.00 30 1550 322.58

10 550 909.09 31 1600 312.50

11 600 833.33 32 100 5000.00

12 650 769.23 33 200 2500.00

13 700 714.29 34 300 1666.67

14 750 666.67 35 400 1250.00

15 800 625.00 36 500 1000.00

16 850 588.24 37 600 833.33

17 900 555.56 38 700 714.29

18 950 526.32 39 800 625.00

19 1000 500.00 40 900 555.56

20 1050 476.19 41 1000 500.00

 Table A-2: TCK values
A-10 User Guide
ARM DUI 0048A

JTAG Interface Connections
42 1100 454.55 66 600 833.33

43 1200 416.67 67 800 625.00

44 1300 384.62 68 1000 500.00

45 1400 357.14 69 1200 416.67

46 1500 333.33 70 1400 357.14

47 1600 312.50 71 1600 312.50

48 1700 294.12 72 1800 277.78

49 1800 277.78 73 2000 250.00

50 1900 263.16 74 2200 227.27

51 2000 250.00 75 2400 208.33

52 2100 238.10 76 2600 192.31

53 2200 227.27 77 2800 178.57

54 2300 217.39 78 3000 166.67

55 2400 208.33 79 3200 156.25

56 2500 200.00 80 3400 147.06

57 2600 192.31 81 3600 138.89

58 2700 185.19 82 3800 131.58

59 2800 178.57 83 4000 125.00

60 2900 172.41 84 4200 119.05

61 3000 166.67 85 4400 113.64

62 3100 161.29 86 4600 108.70

63 3200 156.25 87 4800 104.17

64 200 2500.00 88 5000 100.00

65 400 1250.00 89 5200 96.15

Value Period (ns) Freq (kHz) Value Period (ns) Freq (kHz)

 Table A-2: TCK values (Continued)
User Guide
ARM DUI 0048A

A-11

JTAG Interface Connections
90 5400 92.59 114 7600 65.79

91 5600 89.29 115 8000 62.50

92 5800 86.21 116 8400 59.52

93 6000 83.33 117 8800 56.82

94 6200 80.65 118 9200 54.35

95 6400 78.13 119 9600 52.08

96 400 1250.00 120 10000 50.00

97 800 625.00 121 10400 48.08

98 1200 416.67 122 10800 46.30

99 1600 312.50 123 11200 44.64

100 2000 250.00 124 11600 43.10

101 2400 208.33 125 12000 41.67

102 2800 178.57 126 12400 40.32

103 3200 156.25 127 12800 39.06

104 3600 138.89 128 800 625.00

105 4000 125.00 129 1600 312.50

106 4400 113.64 130 2400 208.33

107 4800 104.17 131 3200 156.25

108 5200 96.15 132 4000 125.00

109 5600 89.29 133 4800 104.17

110 6000 83.33 134 5600 89.29

111 6400 78.13 135 6400 78.13

112 6800 73.53 136 7200 69.44

113 7200 69.44 137 8000 62.50

Value Period (ns) Freq (kHz) Value Period (ns) Freq (kHz)

 Table A-2: TCK values (Continued)
A-12 User Guide
ARM DUI 0048A

JTAG Interface Connections
138 8800 56.82 162 4800 104.17

139 9600 52.08 163 6400 78.13

140 10400 48.08 164 8000 62.50

141 11200 44.64 165 9600 52.08

142 12000 41.67 166 11200 44.64

143 12800 39.06 167 12800 39.06

144 13600 36.76 168 14400 34.72

145 14400 34.72 169 16000 31.25

146 15200 32.89 170 17600 28.41

147 16000 31.25 171 19200 26.04

148 16800 29.76 172 20800 24.04

149 17600 28.41 173 22400 22.32

150 18400 27.17 174 24000 20.83

151 19200 26.04 175 25600 19.53

152 20000 25.00 176 27200 18.38

153 20800 24.04 177 28800 17.36

154 21600 23.15 178 30400 16.45

155 22400 22.32 179 32000 15.63

156 23200 21.55 180 33600 14.88

157 24000 20.83 181 35200 14.20

158 24800 20.16 182 36800 13.59

159 25600 19.53 183 38400 13.02

160 1600 312.50 184 40000 12.50

161 3200 156.25 185 41600 12.02

Value Period (ns) Freq (kHz) Value Period (ns) Freq (kHz)

 Table A-2: TCK values (Continued)
User Guide
ARM DUI 0048A

A-13

JTAG Interface Connections
186 43200 11.57 210 60800 8.22

187 44800 11.16 211 64000 7.81

188 46400 10.78 212 67200 7.44

189 48000 10.42 213 70400 7.10

190 49600 10.08 214 73600 6.79

191 51200 9.77 215 76800 6.51

192 3200 156.25 216 80000 6.25

193 6400 78.13 217 83200 6.01

194 9600 52.08 218 86400 5.79

195 12800 39.06 219 89600 5.58

196 16000 31.25 220 92800 5.39

197 19200 26.04 221 96000 5.21

198 22400 22.32 222 99200 5.04

199 25600 19.53 223 102400 4.88

200 28800 17.36 224 6400 78.13

201 32000 15.63 225 12800 39.06

202 35200 14.20 226 19200 26.04

203 38400 13.02 227 25600 19.53

204 41600 12.02 228 32000 15.63

205 44800 11.16 229 38400 13.02

206 48000 10.42 230 44800 11.16

207 51200 9.77 231 51200 9.77

208 54400 9.19 232 57600 8.68

209 57600 8.68 233 64000 7.81

Value Period (ns) Freq (kHz) Value Period (ns) Freq (kHz)

 Table A-2: TCK values (Continued)
A-14 User Guide
ARM DUI 0048A

JTAG Interface Connections
234 70400 7.10 245 140800 3.55

235 76800 6.51 246 147200 3.40

236 83200 6.01 247 153600 3.26

237 89600 5.58 248 160000 3.13

238 96000 5.21 249 166400 3.00

239 102400 4.88 250 172800 2.89

240 108800 4.60 251 179200 2.79

241 115200 4.34 252 185600 2.69

242 121600 4.11 253 192000 2.60

243 128000 3.91 254 198400 2.52

244 134400 3.72 255 204800 2.44

Value Period (ns) Freq (kHz) Value Period (ns) Freq (kHz)

 Table A-2: TCK values (Continued)
User Guide
ARM DUI 0048A

A-15

JTAG Interface Connections
A-16 User Guide
ARM DUI 0048A

This appendix describes and illustrates the additional input and output connections provided
in Multi-ICE.

B.1 Multi-ICE USER I/O Pin Connections B-2

User I/O Pin ConnectionsB
B-1User Guide
ARM DUI 0048A

User I/O Pin Connections
B.1 Multi-ICE USER I/O Pin Connections
The User I/O connector is situated under the removable cover on the Multi-ICE unit. The
connector is a 20-way header which mates with IDC sockets mounted on a ribbon cable.

 Figure B-1: User I/O pin connections

If you need to drive one of the user-defined inputs with a signal operating at the target
system’s logic levels, see the sample circuit in Figure 3-3: Converting user-input signals
to TTL levels on page 3-18.

B.1.1 Notes

1
3
5
7
9

11

15
17
19

2
4
6
8

10
12
14
16
18
20

13

TestClk

Test1

Test3
Test5

+5V

Vt_out

Vt_in
Comp-

Comp+

Compout

GND

Test2

Test4
Reset

V+HP

out-1

out-2
in-1

in-2

GND

Pin 1 TestClk For production test only. This pin must be left unconnected.

Pin 2 GND

Pin 3 Test1 For production test only. This pin must be left unconnected.

Pin 4 Test2 For production test only. This pin must be left unconnected.

Pin 5 Test3 For production test only. This pin must be left unconnected.

Pin 6 Test4 For production test only. This pin must be left unconnected.

Pin 7 Test5 For production test only. This pin must be left unconnected.

Pin 8 Reset For production test only. This pin must be left unconnected.
B-2 User Guide
ARM DUI 0048A

User I/O Pin Connections
Pin 9 +5V This is intended for use as a supply for a small amount of external
logic circuitry. There is a recommended current limit of 20mA from
this pin. It should be remembered that due to the DC-DC converter,
the additional current taken from the target to supply any external
logic will be approximately:

Iout * (5V / target voltage)

Pin 10 V+HP For production test only. This pin must be left unconnected.

Pin 11 Vt_out For production test only. This pin must be left unconnected.

Pin 12 out-1 This is a user output bit as described in 3.6 User Output Bits on
page 3-17.

Pin 13 Vt_in This is the voltage threshold used for input logic detection, derived
from the target logic reference voltage (VTref on pin 1 of the target
connector). This can be used as one of the inputs to the comparator
if a target logic level is being monitored.

Pin 14 out-2 This is a user output bit as described in 3.6 User Output Bits on
page 3-17.

Pin 15 Comp- This is connected to the inverting input of a spare LM339D
comparator for use with the user-defined input/output. Note that
there is a 1MΩ pull-down resistor to GND.

Pin 16 in-1 This is a user input bit as described in 3.7 User Input Bits on page
3-18. This uses 74ACT family input thresholds and has a 10kΩ
pull-up to +5V.

Pin 17 Comp+ This is connected to the non-inverting input of a spare LM339D
comparator for use with the user-defined input/output. Note that
there is a 1MΩ pull-up resistor to +5V.

Pin 18 in-2 This is a user input bit as described in 3.7 User Input Bits on page
3-18. This uses 74ACT family input thresholds and has a 10kΩ
pull-up to +5V.

Pin 19 Compout This is connected to the output of a spare LM339D comparator for
use with the user-defined input/output. Note that this is an open
collector so it requires a pull-up resistor (user inputs in-1 and in-2
already have suitable pull-ups (10kΩ to 5V)).

Pin 20 GND
User Guide
ARM DUI 0048A

B-3

User I/O Pin Connections
B-4 User Guide
ARM DUI 0048A

This appendix contains details relating to register mapping information for the ARM7 and
ARM9 based processors containing a CP15 device, as well as support information for
caches and WinCE features.

C.1 Register Mapping C-2

CP15 Register MappingC
C-1User Guide
ARM DUI 0048A

CP15 Register Mapping
C.1 Register Mapping
The Multi-ICE Debugger for Windows (MDW) currently only supports the display of
Coprocessor 15 registers in a list format where each entry corresponds to a single register
and data is viewed/edited as 32 bit hex numbers. The problem with this approach is that
when dealing with CP15, some of the physical register numbers are used for more than one
function—for example, on the ARM710T device, CP15 r8 is used to either flush the TLB or
flush a single TLB entry.

To illustrate this point, the CP15 registers for the relevant processors are laid out in Table
C-1: ARM710T processor, Table C-2: ARM720T processor on page C-4, Table C-3:
ARM740T on page C-5 and Table C-4: ARM940T on page C-6.

Only the standard registers will appear in the co-processor window, debugger internal
variables and/or the data written to a register are used to determine the exact meaning of
the access.

The extra debugger internal variables that have been defined are:

• cp15_cache_selected

• cp15_current_memory_area

Refer to 4.6.2 Debugger internal variables on page 4-22.

C.1.1 ARM710T

Register Description Access Data

r0 ID Register Read Only

r1 Configuration Register Read/Write Config Value

r2 Translation Table Base Register Read/Write Base Address

r3 Domain Access Control Register Read/Write Domain Value

r5 Fault Status Register Read/Write Fault Value

r6 Fault Address Register Read/Write Fault Address

r7 Cache Operations:
Invalidate ID Cache

Write Only
SBZ

r8 TLB Operations:
Invalidate whole TLB
Invalidate Single Entry

Write Only
SBZ
Virtual Address

 Table C-1: ARM710T processor
C-2 User Guide
ARM DUI 0048A

CP15 Register Mapping
The encodings to be used to read/write the registers are as follows:

r0–r3, r5–r6 Data reads/writes occur as expected.

r7 Any value invalidates ID Cache.

r8 Writing 0 causes the whole TLB to be invalidated.
Writing {Address} with bit 0 set to 1, causes TLB entry for {Address} to
be invalidated.
User Guide
ARM DUI 0048A

C-3

CP15 Register Mapping
C.1.2 ARM720T

The encodings to be used to read/write the registers are as follows:

r0–r3, r5–r6 Data reads/writes occur as expected.

r7 Any value invalidates ID Cache.

r8 Writing 0 causes the whole TLB to be invalidated.
Writing {Address} with bit 0 set to 1, causes TLB entry for {Address} to
be invalidated.

r13 Data reads/writes occur as expected.

Register Description Access Data

r0 ID Register Read Only

r1 Configuration Register Read/Write Config Value

r2 Translation Table Base Register Read/Write Base Address

r3 Domain Access Control Register Read/Write Domain Value

r5 Fault Status Register Read/Write Fault Value

r6 Fault Address Register Read/Write Fault Address

r7 Cache Operations:
Invalidate ID Cache

Write Only
SBZ

r8 TLB Operations:
Invalidate whole TLB
Invalidate Single Entry

Write Only
SBZ
Virtual Address

r13 Process ID Register (WinCE) Read/Write Process ID

 Table C-2: ARM720T processor
C-4 User Guide
ARM DUI 0048A

CP15 Register Mapping
C.1.3 ARM740T

The encodings to be used to read/write the registers are as follows:

r0–r3,r5 Data reads/writes occur as expected.

r6 Data value read/written will set/read a memory area definition
consisting of a base address, a size value, and an enable flag for the
Memory area defined by the variable cp15_current_memory_area.

r7 Any value invalidates ID Cache

Register Description Access Data

r0 ID Register Read Only

r1 Configuration Register Read/Write Config Value

r2 Cacheable Control Read/Write Cache Ctrl Flags

r3 Bufferable Control Read/Write Buffer Ctrl Flags

r5 Memory Protection Read/Write Memory Prtn Data

r6 Memory Area Definition:
Memory Region 0
Memory Region 1
Memory Region 2
Memory Region 3
Memory Region 4
Memory Region 5
Memory Region 6
Memory Region 7

Read/Write
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable

r7 Cache Operations:
Invalidate ID Cache

Write Only
SBZ

 Table C-3: ARM740T
User Guide
ARM DUI 0048A

C-5

CP15 Register Mapping
C.1.4 ARM940T

Register Description Access Data

r0 ID Register Read Only

r1 Configuration Register Read/Write Config Flags

r2 Cacheable Control:
Data Cache Control
Instruction Cache Control

Read/Write
D-Cache Ctrl Flags
I-Cache Ctrl Flags

r3 Bufferable Control Read/Write D-Buffer Ctrl Flags

r5 Memory Protection:
Data Cache Control
Instruction Cache Control

Read/Write
D-Prtn Ctrl Flags
I-Prtn Ctrl Flags

r6 Memory Area Definition:
Data Memory Region 0
Data Memory Region 1
Data Memory Region 2
Data Memory Region 3
Data Memory Region 4
Data Memory Region 5
Data Memory Region 6
Data Memory Region 7
Instruction Memory Region 0
Instruction Memory Region 1
Instruction Memory Region 2
Instruction Memory Region 3
Instruction Memory Region 4
Instruction Memory Region 5
Instruction Memory Region 6
Instruction Memory Region 7

Read/Write
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable
Base/Size/Enable

 Table C-4: ARM940T
C-6 User Guide
ARM DUI 0048A

CP15 Register Mapping
The encodings to be used to read/write the registers are as follows:

r0–r1 Data reads/writes occur as expected.

r2 Data read/write with cp15_cache_selected = 0 reads/writes
D-Cache Bits. Data read/write with cp15_cache_selected = 1
reads/writes I-Cache Bits.

r3 Data reads/writes occur as expected.

r5 Data read/write with cp15_cache_selected = 0 reads/writes Data
protection Access permissions Data read/write with
cp15_cache_selected = 1 reads/writes Instruction protection
Access permissions

r6 Data value read/written will read/write a memory area definition
consisting of a base address, a size and an enable flag for the Memory
area defined by the value of the cp15_current_memory_area
variable. In addition the variable cp15_cache_selected selects
between the I/D areas.

r7 Bits[1:0] of the data value written in conjunction with the value of
cp15_cache_selected decide on the function accessed, as shown
in Table C-5: ARM940T cp15 register 7 accesses on page C-8.

r7 Cache Operations:
Flush I-Cache
Flush I-Cache Single Entry
Flush D-Cache
Flush D-Cache Single Entry
Clean D-Cache Entry
Prefetch I-Cache Line
Clean and Flush D-Cache entry

Write Only
SBZ
Index/Segment
SBZ
Index/Segment
Index/Segment
Address
Index/Segment

r9 Lockdown control:
Data Lockdown Control
lnstruction Lockdown Control

Read/Write
D-Ctrl Value
I-Ctrl Value

r15 Test/Debug Register Read/Write Map I/D CAM Flags

Register Description Access Data

 Table C-4: ARM940T (Continued)
User Guide
ARM DUI 0048A

C-7

CP15 Register Mapping
The data value used once the function has been decoded will be Bits[31:2] of the Data value
written OR’d with binary 00. So If 0x80000002 is written to r7 and
cp15_cache_selected =1 then Instruction Data at 0x80000000 will be prefetched into
the I-Cache.

r8 Data read/write with cp15_cache_selected = 0 reads/writes Data
Lockdown control Data read/write with cp15_cache_selected = 1
reads/writes Instruction Lockdown control

r15 Data read/write occur as expected.

cp15_cache_selected Bit[1] Bit[0] Purpose

0 0 0 Flush D-Cache

0 0 1 Flush 1 entry D-Cache

0 1 0 Clean D-Cache entry

0 1 1 Clean & Flush D-Cache
Entry

1 0 0 Flush I-Cache

1 0 1 Flush 1 entry I-Cache

1 1 0 Prefetch I-Cache cache
line

 Table C-5: ARM940T cp15 register 7 accesses
C-8 User Guide
ARM DUI 0048A

Us
ARM

Index
Numerics
4-bit data transfer 3-16

A
adaptive clocking 2-10

automatic configuration of 2-14
connecting TCK and RTCK 2-14
downloading code at high speed 2-14
examples of 2-11
menu option 3-21
simple loopback 2-10
TrackingICE 2-13
variable clock-rate devices 2-12
very long cables 2-11

addresses, memory 4-16
APM 4-6, 4-12, 4-21

configuring ~ to invoke MDW 4-17
arguments, specifying while debugging 4-35
ARM applications, debugging 4-2
Preliminary Releas

er Guide
 DUI 0048A
ARM Development Board
see also PID Board 1-5

ARM PID, flash download 4-36
ARM PIE7 board 1-5
ARM PIV7T board 1-5
ARM Project Manager

configuring ~ to invoke MDW 4-17
ARM Project Manager (APM) 4-6, 4-12, 4-21
ARMulator, support for 4-20
arrays, displayed in MDW 4-29
asynchronous signals 2-13
autoconfig.cfg file 3-9
automatic configuration 3-5

adaptive clocking 2-14
automatic dialup 1-2

B
backtrace 4-4
Backtrace Window 4-9
batch files, MDW command line 4-49
e - Draft

Index-1

Index

Index-2
breakpoints 4-4
complex 4-31
low-level symbols 4-32
removing 4-15
simple 4-13

Breakpoints Window 4-9, 4-42
building a driver 5-9

C
calculating JTAG clock speed 3-20
cfg files 2-5
changing context 4-38–4-39
channel viewers

activating 4-37
DLL 3-15
selecting 3-15

clock speed 3-20
setting 3-7

closing
TAP connection 5-38
TAPOp connection 5-4

command-line
arguments, specifying while debugging

4-35
debugger within MDW 4-36
interface for MDW 4-48

using batch files 4-49
common data

reading 5-61
compatibility with existing boards 1-5
Compiler differences 5-10
complex

breakpoints 4-31
watchpoints 4-32

concepts
Multi-ICE 2-1

configuration files
creating 3-9
example of 3-11
loading 3-4, 3-12

configured devices, displaying 3-10
configuring

debugger for Multi-ICE 3-13
Preliminary Relea
MDW 4-19
Multi-ICE 2-5

automatic 2-5, 2-8, 3-9
manual 2-5

target environment 4-18
configuring MDW 4-40
connecting

debugger to Multi-ICE 3-13
Multi-ICE hardware 1-4

connection
automatic deselection 5-6
closing 5-38, 5-49
creating 5-58
deleting all macros for 5-52
deleting current macro 5-53
initializing 5-39
opening over TCP 5-3
TAPOp

closing 5-4
ID 5-3

context 4-38
changing 4-38–4-39
disabling context change 4-40
processor 4-38

cores
information on 3-10
starting and stopping 3-6
supported in Multi-ICE 3-9

creating
conection to a TAP controller 5-58
Multi-ICE configuration files 3-9

cursor, running execution to 4-13

D
data

reading and writing to a TAP data register
5-27, 5-29

reading from a scan chain 5-40
writing to a scan chain 5-40, 5-42
writing to a TAP data register 5-23, 5-25,

5-32
writing to a TAP instruction register 5-34,

5-35, 5-44
se - Draft

User Guide
ARM DUI 0048A

Index

Us
ARM
data block
writing to 5-75

data transfer, 4-bit 3-16
debugger

connecting to Multi-ICE 3-13
default memory map 4-19
disable splash screen 4-19
endian 4-19
internal variables for MDW 4-22
internal variables non-specific to

Multi-ICE 4-25
internal variables specific to Multi-ICE

4-22
MDW 4-2
performance 3-24
profile interval 4-19
remote startup warning 4-19
source tab length 4-19
target environment 3-13

Debugger Internals Window 4-9
debugging Multi-ICE

overview 2-9
defining macros 5-50
deleting macros 5-52, 5-53
devices

available 5-56
displaying configured 3-10
interaction between 3-22
polling 3-24
supported 3-9

directories containing spaces 4-6
disassembled code 4-5

displaying 4-29
disassembly mode, specifying 4-30
Disassembly Window 4-9
disk space 1-3
display formats 4-28

changing 4-28
restoring default 4-28

displaying
configured devices 3-10
disassembled code 4-29
lines of a macro 5-54
RPC call information 3-5
source files 4-21
Preliminary Releas

er Guide
 DUI 0048A
DLL files
channel viewer 3-15
Multi-ICE 2-4

downloading code
setting high clock speed 2-14
setting user output bits 3-17

drivers
details of 5-56
files (MUL) 4-2

E
editing

complex breakpoints 4-31
complex watchpoints 4-32
registers 4-16
variables 4-16

EmbeddedICE, comparing with Multi-ICE 2-3
Endian

big-endian 4-19
little-endian 4-19

environment
configuring 4-18

error messages
from MDW 3-26
from Multi-ICE server 3-25
TAPOp 5-80

examining
memory 4-16
registers 4-15
variables 4-15

executing an image
from MDW 4-12
user output bit settings 3-17

exiting
from Multi-ICE 3-5
MDW 4-17

Expression Window 4-9

F
files

.cgf 2-5
e - Draft

Index-3

Index

Index-4
autoconfig.cfg 3-9
batch

MDW command line 4-49
DLL 2-4
IRlength.arm 2-5, 2-7, 2-8
log 3-5
MUL 4-2
rpcclient.c 5-3
source 5-9
tapop.h 5-5
tapshare.h 5-7
Userdrv.txt 2-8

flags
reading 5-64
writing 5-78

flash downloading, MDW 4-36
formats, display 4-28
Function Names Window 4-9
functions, stepping through 4-13

G
global variables, examining 4-15
Globals Window 4-9

H
hardware requirements 1-2
header card

ARM7TDMI 1-5
high-level symbols 4-5

I
images

displaying information about 4-21
executing 4-12
loading 4-11
reloading 4-17
running 4-41
stepping through 4-12

immediate evaluation of variables 4-27
Preliminary Relea
indirection, MDW 4-29
initializing, TAP connection 5-39
integer, display 4-29
interaction between devices 3-22
IR register 2-7
IRlength.arm file 2-5, 2-7, 2-8

adding non-ARM devices 2-8
example of 2-7

J
JTAG

clock speed
calculating 3-20
setting 3-20

controlling settings for 3-6
list of signals A-2
low clock rates 3-20
pin connections A-1
RTCK signal 2-10
TCK signal 2-10

K
killing

TAP connection 3-6, 5-49

L
lines of code, stepping to 4-12
listing TAP controllers 3-6
loading

configuration files 3-4, 3-12
images 4-11
macro parameters 5-55

local variables, examining 4-15
Locals Window 4-9
log files 3-5

adding a message 5-57
logging, controlling 5-73
Low Level Symbols Window 4-9
low-level symbols 4-5
se - Draft

User Guide
ARM DUI 0048A

Index

Us
ARM
breakpoints 4-32

M
macros

closing 5-4
defining 5-50
deleting all 5-52
deleting current 5-53
displaying lines of 5-54
eventMacro 5-70
examples of 5-14
ExecuteMacro 5-70
introduction to 5-11
limitations of 5-6
loading variable parameters 5-55
parameters 5-11

fixed and variable 5-12
running 5-66, 5-68
StopMacro 5-70
sychronizing processors 5-70
TapCheck 5-6
writing 5-11

MDW 4-2
channel viewer 4-37
configuring 4-19, 4-40
configuring target environments 4-18
debugger internal variables 4-22
desktop 4-8
error messages 3-26
exiting 4-17
getting started 4-11
running from the command-line 4-48

batch files 4-49
selecting context 4-38
starting 3-2
stepping 4-41

memory
copying from disk 4-34
displayed 4-29
displaying as disassembly 4-29
examining 4-16
saving to disk 4-34

Memory Window 4-10
Preliminary Releas

er Guide
 DUI 0048A
messages, in log files 5-57
mice_clnt.c file 5-9
mice_xdr.c file 5-9
mini toolbar 4-41, 4-43, 4-47
modification box 1-5
modifying

registers 4-16
variables 4-16

MUL files 4-2
Multi-ICE 3-5

bits 5-9
building a driver 5-9
comparing with EmbeddedICE 2-3
concepts 2-1
configuring 2-5

automatic 2-5, 2-8, 3-9
configuration files 2-5
manual 2-5

debugging
overview 2-9

DLL 2-4
driver files 4-2
features 2-2
poll rate 3-24
startup menu 3-2
status bar 3-5
supported cores 3-9
toolbar 3-5
using non-ARM devices 2-8

Multi-ICE menus
Connection 3-6
File 3-4
Help 3-8
overview 3-4
Run Control 3-6
Settings 3-6
View 3-5

Multi-ICE power supply 1-4
Multi-ICE server 2-3

accessing via TAPOp procedure calls 5-3
and TAPOp connections 5-4
error messages 3-25
problems with starting 3-3
window 3-3

Multi-processor Debugger for Windows See
e - Draft

Index-5

Index

Index-6
MDW

N
name of RPC server 5-37
networking software 1-2
non-ARM devices in Multi-ICE 2-8

O
oncrpc.lib file 5-9
opening a TAPOp connection 5-3
opening a TCP connection 5-3

P
parallel port

4-bit data transfer 3-16
selecting 3-6
setting 3-16

parameters
fixed and variable 5-12
for macros 5-11
loading for a macro 5-55

Piccolo
execution window 4-43
synchronous stopping with ~ 4-42
using MDW with ~ 4-38
working with ~ 4-43

PID Board 1-5
pin connections

JTAG A-1
user I/O B-1

polling devices 3-24
Portmap service 3-8
power status of target 5-62
power supply for Multi-ICE 1-4
processor context 4-38
processors 5-70

stopping 5-70
properties of variable 4-29
Preliminary Relea
R
RDI Log Window 4-10
RDI Protocol Log, displaying 4-30
reading

data block 5-61
data from a scan chain 5-40
data from a TAP data register 5-27, 5-29
private flags 5-64

registers
changing formats of ~ 4-46
editing contents of ~ 4-45
examining 4-15
IR 2-7
modifying 4-16
window menu 4-45
windows 4-43

Registers Window 4-10
regular expressions 4-5
reloading images 4-17
Remote Debug Information, displaying 4-30
removing

breakpoints 4-15
watchpoints 4-15

requirements
hardware 1-2
software 1-2

returned TCK signal (RTCK) 2-10
RPC

batched processing 5-3
calls 5-3
display 3-5
logging 3-5
returning the server name 5-37

RPC server, returning name of 5-37
rpcclient.c file 5-3, 5-9
run control 3-22
running an image 4-41
running macros 5-66, 5-68

S
scan chains 2-7

multiple 5-4
se - Draft

User Guide
ARM DUI 0048A

Index

Us
ARM
search paths 4-6
adding 4-21

Search Paths Window 4-10
see also ARM Development Board 1-5
selecting TAP controllers 3-14
semihosting 4-23
setting

clock speed 3-7
JTAG clock speed 3-20
parallel port 3-16
simple breakpoint 4-13
simple watchpoints 4-14
user output bits 3-17

signals
asynchronous 2-13
JTAG, list of A-2
RTCK 2-10

and TrackingICE 2-13
over long cable 2-12
with simple loopback 2-11
with variable clock device 2-12

synchronizing 2-10
system reset 5-74
TCK 2-10

sequence of 5-45, 5-47
user-defined 5-76, 5-77

single stepping through an image (MDW) 4-12
software requirements 1-2
Source File Window 4-10
source files 5-9

displaying 4-21
listing 4-22
search paths 4-6

Source Files List Window 4-10
spaces

directories containing ~ 4-6
specifying a disassembly mode 4-30
starting 5-70

cores 3-6
MDW 3-2
Multi-ICE 3-2

status bar 3-5
stepping through an image 4-12, 4-41
stopping cores 3-6
supported devices 3-9
Preliminary Releas

er Guide
 DUI 0048A
symbols 4-5
breakpoints 4-32

synchronizing
clock speed 2-10

menu option 3-21
processors 5-70

system requirements 1-2
system reset signal 5-74

T
TAP controllers

available drivers 5-56
controlling log functions 5-73
identification 5-5
listing 3-6
private data 5-7

flags 5-8
selecting 3-14
shared 2-7
user output bits 3-17

TapCheck macro 5-6
TAPOp procedure calls 5-2

accessing Multi-ICE server 5-3
alphabetical listing of 5-21
ARMTAP_AccessDR_1Clk_W 5-23
ARMTAP_AccessDR_NoClk_W 5-25
ARMTAP_AccessDR_RW 5-27
ARMTAP_AccessDR_RW_And_Test

5-29
ARMTAP_AccessDR_W 5-32
ARMTAP_AccessIR 5-34
ARMTAP_AccessIR_1Clk 5-35
ARMTAP_ClockARM 5-36
closing a connection 5-4
controlling user output bits 3-17
deselecting connections 5-6
error detection 5-6
error messages 5-80
GetServerName 5-37
introduction 5-2
listed by function 5-18
rpc_finalise 5-38
rpc_initialise 5-39
e - Draft

Index-7

Index

Index-8
TAPOp_AccessDR_RW 5-40
TAPOp_AccessDR_W 5-42
TAPOp_AccessIR 5-44
TAPOp_AnySequence_RW 5-45
TAPOp_AnySequence_W 5-47
TAPOp_CloseConnection 5-49
TAPOp_DefineMacro 5-50
TAPOp_DeleteAllMacros 5-52
TAPOp_DeleteMacro 5-53
TAPOp_DisplayMacro 5-54
TAPOp_FillMacroBuffer 5-55
TAPOp_GetDriverDetails 5-56
TAPOp_LogString 5-57
TAPOp_OpenConnection 5-58
TAPOp_PingServer 5-60
TAPOp_ReadCommonData 5-61
TAPOp_ReadMICEFlags 5-62
TAPOp_ReadPrivateFlags 5-64
TAPOp_RunBufferedMacro 5-66
TAPOp_RunMacro 5-68
TAPOp_SetControlMacros 5-70
TAPOp_SetLogging 5-73
TAPOp_SetSysResetSignal 5-74
TAPOp_WriteCommonData 5-75
TAPOp_WriteMICEUser1 5-76
TAPOp_WriteMICEUser2 5-77
TAPOp_WritePrivateFlags 5-78

tapop.h file 5-5
tapshare flags 5-8
tapshare.h file 5-7
target environments 3-13

configuring 4-18
target, checking power on 5-62
TCP/IP network services 2-4, 5-3
toggle interleaving, disassembled code 4-29
toolbar 3-5
TrackingICE and RTCK 2-13
transport mechanism

TCP 2-4, 5-3
opening a connection 5-3

U
Unknown devices 2-8
Preliminary Relea
user I/O pin connections B-1
user input bits

sample circuit 3-18
viewing 3-19

user output bits
accessing 3-17
controlling 3-6
setting 3-17
setting TAP controllers 3-17
TAPOp procedure calls 3-17

user-defined signals 5-76, 5-77
Userdrv.txt files 2-8

V
variables

MDW
changing display formats 4-28
displaying 4-27
examining 4-15
immediate evaluation 4-27
modifying 4-16
properties 4-29
window 4-9

MDW-specific 4-22
viewing

disassembled code 4-29
Remote Debug Information 4-30
source files in MDW 4-21
user input bits 3-19
variable properties 4-29
variables 4-27

W
watchpoints 4-7

complex 4-32
editing 4-33
removing 4-15
simple 4-14

Watchpoints Window 4-10
windows, MDW 4-8
writing 5-76, 5-77
se - Draft

User Guide
ARM DUI 0048A

Index

Us
ARM
data block, to 5-75
data to a scan chain 5-40, 5-42
data to a TAP data register 5-23, 5-25,

5-27, 5-29, 5-32
data to a TAP instruction register 5-34,

5-35, 5-44
flags 5-78
Preliminary Releas

er Guide
 DUI 0048A
e - Draft

Index-9

Index

Index-10
Preliminary Relea
se - Draft

User Guide
ARM DUI 0048A

	Getting Started
	1.1 System Requirements
	1.1.1 Software requirements
	Networking software
	Automatic dialup

	1.1.2 Hardware requirements
	Disk space

	1.2 Connecting the Multi-ICE Hardware
	1.2.1 Multi-ICE power supply
	1.2.2 Compatibility with existing boards

	Multi-ICE Concepts
	2.1 Introduction
	2.1.1 Features of Multi-ICE
	2.1.2 Comparing Multi�ICE and EmbeddedICE
	2.1.3 Multi-ICE Server
	2.1.4 Multi-ICE DLL for MDW

	2.2 Multi�ICE Configuration Data
	2.2.1 Automatic configuration
	2.2.2 Manual configuration
	2.2.3 Relationship between Multi�ICE configuration items
	2.2.4 The IRlength file
	Counting IR bits
	Shared TAP controllers

	2.2.5 Configuring non�ARM devices
	Manual configuration
	Automatic configuration

	2.3 Debugging Using Multi-ICE
	2.4 Adaptive Clocking
	2.4.1 Very long cables
	2.4.2 Variable clock�rate devices
	2.4.3 TrackingICE
	2.4.4 Other features of Adaptive Clocking

	Using Multi-ICE
	3.1 Starting Multi-ICE
	3.1.1 Problems starting Multi-ICE server

	3.2 Overview of Multi�ICE Server Menus
	3.2.1 File menu
	3.2.2 View menu
	3.2.3 Run Control menu
	3.2.4 Connection menu
	3.2.5 Settings menu
	3.2.6 Help menu

	3.3 Multi-ICE Server Configuration Files
	3.3.1 Supported devices
	3.3.2 Automatic configuration
	3.3.3 Information on connected cores
	3.3.4 Creating a configuration file
	3.3.5 Example configuration file
	3.3.6 Loading a configuration file

	3.4 Connecting an ARM Debugger to the Multi�ICE Server
	3.5 Setting Ports
	3.5.1 Port address
	3.5.2 Force 4�bit access

	3.6 User Output Bits
	3.6.1 Bit settings
	3.6.2 Tap position

	3.7 User Input Bits
	3.7.1 Viewing the User Input Bits

	3.8 Clocking
	3.8.1 Using your own values
	Multiplier value
	Scale value
	Sample frequencies

	3.8.2 Adaptive clocking

	3.9 Run Control
	3.9.1 Setting up interaction between devices
	Combining options

	3.9.2 Setting up the poll rate

	3.10 Error Messages
	3.10.1 Server messages
	3.10.2 Debugger messages

	Multi�processor Debugger for�Windows (MDW)
	4.1 Introduction
	4.1.1 Multi�ICE drivers
	4.1.2 CP15
	4.1.3 On-line help

	4.2 MDW Concepts
	4.2.1 Backtrace
	4.2.2 Breakpoints
	4.2.3 Disassembled code
	4.2.4 High- and low-level symbols
	4.2.5 Regular expressions
	4.2.6 Search paths
	4.2.7 Watchpoints

	4.3 The MDW Desktop
	Execution window
	Command window
	Console window
	4.3.1 Other available windows
	4.3.2 Status bar

	4.4 Getting Started
	4.4.1 Loading an image
	4.4.2 Executing an image
	4.4.3 Stepping through an image
	Step to the next line of code:
	Step In to a function call:
	Step Out of a function
	Run execution to the cursor:

	4.4.4 Setting breakpoints and watchpoints
	Breakpoints
	Watchpoints

	4.4.5 Removing a breakpoint or watchpoint
	To remove a breakpoint:
	To remove a watchpoint:

	4.4.6 Examining and setting variables and registers
	Variables
	Registers

	4.4.7 Examining memory
	4.4.8 Reloading the image
	4.4.9 Configuring the APM to invoke MDW
	4.4.10 Exiting the Debugger

	4.5 Debugger Configuration
	4.5.1 Target
	4.5.2 Debugger
	4.5.3 ARMulator

	4.6 Displaying Image Information
	4.6.1 Source files
	Search paths
	Listing source files
	Source files

	4.6.2 Debugger internal variables
	Debugger internal variables specific to Multi-ICE
	user_input_bit1 and user_input_bit2
	user_output_bit1 and user_output_bit2
	vector_address
	safe_non_vector_address
	arm9_restart_code_address
	system_reset
	cp15_cache_selected (0 or 1: 0=D-Cache, 1=I-Cache)
	cp15_current_memory_area (0—7: 0=Memory area 0 &ct)
	cp_access_code_address
	semihosting_enabled and semihosting_dcchandler_address
	Semihosting off (semihosting_enabled=0)
	Standard semihosting (semihosting_enabled=1)
	Debug Comms Channel semihosting (semihosting_enabled=2)
	Problems with semihosting_enabled=2
	Debugger internal variables non-specific to Multi-ICE
	vector_catch
	cmdline
	rdi_log
	clock
	top_of_memory
	pr_linelength
	inputbase
	format
	sourcedir
	result
	fpresult
	type_lines
	list_lines
	examine_lines
	echo

	4.6.3 Local and global variables
	Display formats
	Variable properties
	Indirection

	4.6.4 Disassembly code
	Specifying a disassembly mode

	4.6.5 Remote debug information

	4.7 Setting and Editing Complex Breakpoints and Watchpoints
	4.7.1 Breakpoints
	To set or edit a complex breakpoint on a line of code:
	To set or edit a complex breakpoint on a function:
	To set a breakpoint on a low-level symbol:

	4.7.2 Watchpoints
	To set a complex watchpoint:
	To edit a complex watchpoint:

	4.8 Other Debugging Functions
	4.8.1 Saving or changing an area of memory
	To save an area of memory to a file on disk:
	To load a file on disk to memory:

	4.8.2 Specifying command line arguments for your program
	4.8.3 Using command line debugger instructions
	4.8.4 Flash download
	Set Ethernet Address
	Arguments/Image

	4.8.5 Channel viewers
	Sending information
	Receiving information

	4.9 Using MDW with Piccolo
	4.9.1 Processor context
	Selecting context using the toolbar
	Selecting context by execution window
	Selecting context by execution window menu

	4.9.2 Running an image
	4.9.3 Stepping through an image
	4.9.4 Breakpoints
	4.9.5 Synchronous stopping with Piccolo
	4.9.6 Piccolo connection problems

	4.10 Working with Piccolo
	4.10.1 The Piccolo execution window
	Execution Window menu

	4.10.2 The Piccolo registers windows
	Registers window menu
	Editing register contents
	Changing register formats

	4.10.3 The Piccolo mini toolbar

	4.11 Command Line Options for MDW
	4.11.1 Command line
	4.11.2 MDW�specific options
	4.11.3 Piccolo�specific options
	4.11.4 MDW support option
	Using a batch file
	Session switches
	Quitting from batch files

	4.11.5 Examples

	TAPOp Procedure Calls
	5.1 Introduction
	Test Access Port (TAP) controller state transitions

	5.2 Accessing the Multi-ICE Server at the TAPOp Level
	5.2.1 Connections
	Opening a TCP connection
	Opening a TAPOp connection
	Closing a TAPOp connection

	5.2.2 Multiple clients of the TAPOp layer
	5.2.3 TAP controller identification
	5.2.4 Order of output of TDI/TMS bits passed over tapop.h
	5.2.5 Accessing long scan chains/using mask and offset parameters
	5.2.6 Efficiency considerations
	5.2.7 Error detection and automatic connection de-selection
	5.2.8 TAPSHARE.H header file
	Private flags
	TAPOp_ProcRunning
	TAPOp_ProcHasStopped TAPOp_ProcStoppedByServer
	TAPOp_DownloadingCode
	TAPOp_ProcStartREQ TAPOp_ProcStartACK
	TAPOp_UserWantsSyncStart TAPOp_UserWantsSyncStop

	5.2.9 Flags returned by ReadMICEFlags
	5.2.10 Building a driver
	Compiler differences

	5.3 Using TAPOp Macros
	5.3.1 Writing a macro
	5.3.2 Passing fixed and variable parameters to TAPOp macros
	C macros for passing fixed and variable parameters

	5.3.3 Example 1
	To define the macro
	To run the macro

	5.3.4 Example 2
	To define the macro
	To run the macro

	5.3.5 Example 3
	To define the macro
	To run the macro

	5.4 TAPOp Calls Listed by Function
	5.4.1 TAP controller/scan chain access
	5.4.2 Data read/write
	5.4.3 Connection control
	5.4.4 Debugging
	5.4.5 Macro usage
	5.4.6 User I/O

	5.5 TAPOp Procedure Call Alphabetic Reference
	5.5.1 ARMTAP_AccessDR_1Clk_W
	Arguments
	Returns
	Notes

	5.5.2 ARMTAP_AccessDR_NoClk_W
	Arguments
	Returns
	Notes

	5.5.3 ARMTAP_AccessDR_RW
	Arguments
	Returns
	Notes

	5.5.4 ARMTAP_AccessDR_RW_And_Test
	Arguments
	Returns
	Notes

	5.5.5 ARMTAP_AccessDR_W
	Arguments
	Returns
	Notes

	5.5.6 ARMTAP_AccessIR
	Arguments
	Returns
	Notes

	5.5.7 ARMTAP_AccessIR_1Clk
	Arguments
	Returns
	Notes

	5.5.8 ARMTAP_ClockARM
	Arguments
	Returns
	Notes

	5.5.9 GetServerName
	Arguments
	Returns

	5.5.10 rpc_finalise
	Arguments
	Returns

	5.5.11 rpc_initialise
	Arguments
	Returns

	5.5.12 TAPOp_AccessDR_RW
	Arguments
	Returns
	Notes

	5.5.13 TAPOp_AccessDR_W
	Arguments
	Returns
	Notes

	5.5.14 TAPOp_AccessIR
	Arguments
	Returns
	Notes

	5.5.15 TAPOp_AnySequence_RW
	Arguments
	Returns
	Post conditions
	Restrictions

	5.5.16 TAPOp_AnySequence_W
	Arguments
	Returns
	Post conditions
	Restrictions

	5.5.17 TAPOp_CloseConnection
	Arguments
	Returns

	5.5.18 TAPOp_DefineMacro
	Arguments
	Returns

	5.5.19 TAPOp_DeleteAllMacros
	Arguments
	Returns

	5.5.20 TAPOp_DeleteMacro
	Arguments
	Returns

	5.5.21 TAPOp_DisplayMacro
	Arguments
	Returns
	Note
	Output format

	5.5.22 TAPOp_FillMacroBuffer
	Arguments
	Returns

	5.5.23 TAPOp_GetDriverDetails
	Arguments
	Returns

	5.5.24 TAPOp_LogString
	Arguments
	Returns
	Note

	5.5.25 TAPOp_OpenConnection
	Arguments
	Returns

	5.5.26 TAPOp_PingServer
	Arguments

	5.5.27 TAPOp_ReadCommonData
	Arguments
	Returns
	Note

	5.5.28 TAPOp_ReadMICEFlags
	Arguments
	Returns
	Flags
	TAPOp_FL_TargetPowerOffNow
	TAPOp_FL_TargetPowerHasBeenOff

	5.5.29 TAPOp_ReadPrivateFlags
	Arguments
	Returns
	Flags
	TAPOp_ProcRunning
	TAPOp_ProcHasStopped TAPOp_ProcStoppedByServer
	TAPOp_DownloadingCode
	TAPOp_ProcStartREQ TAPOp_ProcStartACK
	TAPOp_UserWantsSyncStart TAPOp_UserWantsSyncStop

	5.5.30 TAPOp_RunBufferedMacro
	Arguments
	Return

	5.5.31 TAPOp_RunMacro
	Arguments
	Returns
	Note

	5.5.32 TAPOp_SetControlMacros
	Note
	Arguments
	Returns
	Flags
	TAPOp_SyncStopSupported
	TAPOp_SyncStartSupported
	TAPOp_PreExecMacroUsed
	TAPOp_PostExecMacroUsed

	5.5.33 TAPOp_SetLogging
	Arguments
	Returns

	5.5.34 TAPOp_SetSysResetSignal
	Arguments
	Returns
	Notes

	5.5.35 TAPOp_WriteCommonData
	Arguments
	Returns
	Note

	5.5.36 TAPOp_WriteMICEUser1
	Arguments
	Returns
	Note

	5.5.37 TAPOp_WriteMICEUser2
	Arguments
	Returns
	Note

	5.5.38 TAPOp_WritePrivateFlags
	Arguments
	Returns
	Flags
	TAPOp_ProcRunning
	TAPOp_ProcHasStopped TAPOp_ProcStoppedByServer
	TAPOp_DownloadingCode
	TAPOp_ProcStartREQ TAPOp_ProcStartACK
	TAPOp_UserWantsSyncStart TAPOp_UserWantsSyncStop

	5.6 TAPOp Error Codes

	JTAG Interface Connections
	A.1 Multi-ICE JTAG Interface Connections
	5.6.1 Notes

	A.2 Multi-ICE Target Interface Voltage Levels
	A.3 TCK Frequencies
	A.4 TCK Values

	User I/O Pin Connections
	B.1 Multi-ICE USER I/O Pin Connections
	B.1.1 Notes

	CP15 Register Mapping
	C.1 Register Mapping
	C.1.1 ARM710T
	r0–r3, r5–r6 Data reads/writes occur as expected.
	r7 Any value invalidates ID Cache.
	r8 Writing 0 causes the whole TLB to be invalidated. Writing {Address} with bit 0 set to 1, cause...

	C.1.2 ARM720T
	r0–r3, r5–r6 Data reads/writes occur as expected.
	r7 Any value invalidates ID Cache.
	r8 Writing 0 causes the whole TLB to be invalidated. Writing {Address} with bit 0 set to 1, cause...
	r13 Data reads/writes occur as expected.

	C.1.3 ARM740T
	r0–r3,r5 Data reads/writes occur as expected.
	r6 Data value read/written will set/read a memory area definition consisting�of a base address, a...
	r7 Any value invalidates ID Cache

	C.1.4 ARM940T
	r0–r1 Data reads/writes occur as expected.
	r2 Data read/write with cp15_cache_selected = 0 reads/writes D-Cache Bits. Data read/write with c...
	r3 Data reads/writes occur as expected.
	r5 Data read/write with cp15_cache_selected = 0 reads/writes Data protection Access permissions D...
	r6 Data value read/written will read/write a memory area definition consisting�of a base address,...
	r7 Bits[1:0] of the data value written in conjunction with the value of cp15_cache_selected decid...
	r8 Data read/write with cp15_cache_selected = 0 reads/writes Data Lockdown control Data read/writ...
	r15 Data read/write occur as expected.

